mirror of
https://github.com/dutchcoders/transfer.sh.git
synced 2020-11-18 19:53:40 -08:00
1151 lines
30 KiB
Go
1151 lines
30 KiB
Go
// Copyright 2014 Google Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Package graph collects a set of samples into a directed graph.
|
|
package graph
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"path/filepath"
|
|
"regexp"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/google/pprof/profile"
|
|
)
|
|
|
|
var (
|
|
javaRegExp = regexp.MustCompile(`^(?:[a-z]\w*\.)*([A-Z][\w\$]*\.(?:<init>|[a-z][\w\$]*(?:\$\d+)?))(?:(?:\()|$)`)
|
|
goRegExp = regexp.MustCompile(`^(?:[\w\-\.]+\/)+(.+)`)
|
|
cppRegExp = regexp.MustCompile(`^(?:(?:\(anonymous namespace\)::)(\w+$))|(?:(?:\(anonymous namespace\)::)?(?:[_a-zA-Z]\w*\::|)*(_*[A-Z]\w*::~?[_a-zA-Z]\w*)$)`)
|
|
)
|
|
|
|
// Graph summarizes a performance profile into a format that is
|
|
// suitable for visualization.
|
|
type Graph struct {
|
|
Nodes Nodes
|
|
}
|
|
|
|
// Options encodes the options for constructing a graph
|
|
type Options struct {
|
|
SampleValue func(s []int64) int64 // Function to compute the value of a sample
|
|
SampleMeanDivisor func(s []int64) int64 // Function to compute the divisor for mean graphs, or nil
|
|
FormatTag func(int64, string) string // Function to format a sample tag value into a string
|
|
ObjNames bool // Always preserve obj filename
|
|
OrigFnNames bool // Preserve original (eg mangled) function names
|
|
|
|
CallTree bool // Build a tree instead of a graph
|
|
DropNegative bool // Drop nodes with overall negative values
|
|
|
|
KeptNodes NodeSet // If non-nil, only use nodes in this set
|
|
}
|
|
|
|
// Nodes is an ordered collection of graph nodes.
|
|
type Nodes []*Node
|
|
|
|
// Node is an entry on a profiling report. It represents a unique
|
|
// program location.
|
|
type Node struct {
|
|
// Info describes the source location associated to this node.
|
|
Info NodeInfo
|
|
|
|
// Function represents the function that this node belongs to. On
|
|
// graphs with sub-function resolution (eg line number or
|
|
// addresses), two nodes in a NodeMap that are part of the same
|
|
// function have the same value of Node.Function. If the Node
|
|
// represents the whole function, it points back to itself.
|
|
Function *Node
|
|
|
|
// Values associated to this node. Flat is exclusive to this node,
|
|
// Cum includes all descendents.
|
|
Flat, FlatDiv, Cum, CumDiv int64
|
|
|
|
// In and out Contains the nodes immediately reaching or reached by
|
|
// this node.
|
|
In, Out EdgeMap
|
|
|
|
// LabelTags provide additional information about subsets of a sample.
|
|
LabelTags TagMap
|
|
|
|
// NumericTags provide additional values for subsets of a sample.
|
|
// Numeric tags are optionally associated to a label tag. The key
|
|
// for NumericTags is the name of the LabelTag they are associated
|
|
// to, or "" for numeric tags not associated to a label tag.
|
|
NumericTags map[string]TagMap
|
|
}
|
|
|
|
// FlatValue returns the exclusive value for this node, computing the
|
|
// mean if a divisor is available.
|
|
func (n *Node) FlatValue() int64 {
|
|
if n.FlatDiv == 0 {
|
|
return n.Flat
|
|
}
|
|
return n.Flat / n.FlatDiv
|
|
}
|
|
|
|
// CumValue returns the inclusive value for this node, computing the
|
|
// mean if a divisor is available.
|
|
func (n *Node) CumValue() int64 {
|
|
if n.CumDiv == 0 {
|
|
return n.Cum
|
|
}
|
|
return n.Cum / n.CumDiv
|
|
}
|
|
|
|
// AddToEdge increases the weight of an edge between two nodes. If
|
|
// there isn't such an edge one is created.
|
|
func (n *Node) AddToEdge(to *Node, v int64, residual, inline bool) {
|
|
n.AddToEdgeDiv(to, 0, v, residual, inline)
|
|
}
|
|
|
|
// AddToEdgeDiv increases the weight of an edge between two nodes. If
|
|
// there isn't such an edge one is created.
|
|
func (n *Node) AddToEdgeDiv(to *Node, dv, v int64, residual, inline bool) {
|
|
if n.Out[to] != to.In[n] {
|
|
panic(fmt.Errorf("asymmetric edges %v %v", *n, *to))
|
|
}
|
|
|
|
if e := n.Out[to]; e != nil {
|
|
e.WeightDiv += dv
|
|
e.Weight += v
|
|
if residual {
|
|
e.Residual = true
|
|
}
|
|
if !inline {
|
|
e.Inline = false
|
|
}
|
|
return
|
|
}
|
|
|
|
info := &Edge{Src: n, Dest: to, WeightDiv: dv, Weight: v, Residual: residual, Inline: inline}
|
|
n.Out[to] = info
|
|
to.In[n] = info
|
|
}
|
|
|
|
// NodeInfo contains the attributes for a node.
|
|
type NodeInfo struct {
|
|
Name string
|
|
OrigName string
|
|
Address uint64
|
|
File string
|
|
StartLine, Lineno int
|
|
Objfile string
|
|
}
|
|
|
|
// PrintableName calls the Node's Formatter function with a single space separator.
|
|
func (i *NodeInfo) PrintableName() string {
|
|
return strings.Join(i.NameComponents(), " ")
|
|
}
|
|
|
|
// NameComponents returns the components of the printable name to be used for a node.
|
|
func (i *NodeInfo) NameComponents() []string {
|
|
var name []string
|
|
if i.Address != 0 {
|
|
name = append(name, fmt.Sprintf("%016x", i.Address))
|
|
}
|
|
if fun := i.Name; fun != "" {
|
|
name = append(name, fun)
|
|
}
|
|
|
|
switch {
|
|
case i.Lineno != 0:
|
|
// User requested line numbers, provide what we have.
|
|
name = append(name, fmt.Sprintf("%s:%d", i.File, i.Lineno))
|
|
case i.File != "":
|
|
// User requested file name, provide it.
|
|
name = append(name, i.File)
|
|
case i.Name != "":
|
|
// User requested function name. It was already included.
|
|
case i.Objfile != "":
|
|
// Only binary name is available
|
|
name = append(name, "["+filepath.Base(i.Objfile)+"]")
|
|
default:
|
|
// Do not leave it empty if there is no information at all.
|
|
name = append(name, "<unknown>")
|
|
}
|
|
return name
|
|
}
|
|
|
|
// NodeMap maps from a node info struct to a node. It is used to merge
|
|
// report entries with the same info.
|
|
type NodeMap map[NodeInfo]*Node
|
|
|
|
// NodeSet is a collection of node info structs.
|
|
type NodeSet map[NodeInfo]bool
|
|
|
|
// NodePtrSet is a collection of nodes. Trimming a graph or tree requires a set
|
|
// of objects which uniquely identify the nodes to keep. In a graph, NodeInfo
|
|
// works as a unique identifier; however, in a tree multiple nodes may share
|
|
// identical NodeInfos. A *Node does uniquely identify a node so we can use that
|
|
// instead. Though a *Node also uniquely identifies a node in a graph,
|
|
// currently, during trimming, graphs are rebult from scratch using only the
|
|
// NodeSet, so there would not be the required context of the initial graph to
|
|
// allow for the use of *Node.
|
|
type NodePtrSet map[*Node]bool
|
|
|
|
// FindOrInsertNode takes the info for a node and either returns a matching node
|
|
// from the node map if one exists, or adds one to the map if one does not.
|
|
// If kept is non-nil, nodes are only added if they can be located on it.
|
|
func (nm NodeMap) FindOrInsertNode(info NodeInfo, kept NodeSet) *Node {
|
|
if kept != nil {
|
|
if _, ok := kept[info]; !ok {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
if n, ok := nm[info]; ok {
|
|
return n
|
|
}
|
|
|
|
n := &Node{
|
|
Info: info,
|
|
In: make(EdgeMap),
|
|
Out: make(EdgeMap),
|
|
LabelTags: make(TagMap),
|
|
NumericTags: make(map[string]TagMap),
|
|
}
|
|
nm[info] = n
|
|
if info.Address == 0 && info.Lineno == 0 {
|
|
// This node represents the whole function, so point Function
|
|
// back to itself.
|
|
n.Function = n
|
|
return n
|
|
}
|
|
// Find a node that represents the whole function.
|
|
info.Address = 0
|
|
info.Lineno = 0
|
|
n.Function = nm.FindOrInsertNode(info, nil)
|
|
return n
|
|
}
|
|
|
|
// EdgeMap is used to represent the incoming/outgoing edges from a node.
|
|
type EdgeMap map[*Node]*Edge
|
|
|
|
// Edge contains any attributes to be represented about edges in a graph.
|
|
type Edge struct {
|
|
Src, Dest *Node
|
|
// The summary weight of the edge
|
|
Weight, WeightDiv int64
|
|
|
|
// residual edges connect nodes that were connected through a
|
|
// separate node, which has been removed from the report.
|
|
Residual bool
|
|
// An inline edge represents a call that was inlined into the caller.
|
|
Inline bool
|
|
}
|
|
|
|
// WeightValue returns the weight value for this edge, normalizing if a
|
|
// divisor is available.
|
|
func (e *Edge) WeightValue() int64 {
|
|
if e.WeightDiv == 0 {
|
|
return e.Weight
|
|
}
|
|
return e.Weight / e.WeightDiv
|
|
}
|
|
|
|
// Tag represent sample annotations
|
|
type Tag struct {
|
|
Name string
|
|
Unit string // Describe the value, "" for non-numeric tags
|
|
Value int64
|
|
Flat, FlatDiv int64
|
|
Cum, CumDiv int64
|
|
}
|
|
|
|
// FlatValue returns the exclusive value for this tag, computing the
|
|
// mean if a divisor is available.
|
|
func (t *Tag) FlatValue() int64 {
|
|
if t.FlatDiv == 0 {
|
|
return t.Flat
|
|
}
|
|
return t.Flat / t.FlatDiv
|
|
}
|
|
|
|
// CumValue returns the inclusive value for this tag, computing the
|
|
// mean if a divisor is available.
|
|
func (t *Tag) CumValue() int64 {
|
|
if t.CumDiv == 0 {
|
|
return t.Cum
|
|
}
|
|
return t.Cum / t.CumDiv
|
|
}
|
|
|
|
// TagMap is a collection of tags, classified by their name.
|
|
type TagMap map[string]*Tag
|
|
|
|
// SortTags sorts a slice of tags based on their weight.
|
|
func SortTags(t []*Tag, flat bool) []*Tag {
|
|
ts := tags{t, flat}
|
|
sort.Sort(ts)
|
|
return ts.t
|
|
}
|
|
|
|
// New summarizes performance data from a profile into a graph.
|
|
func New(prof *profile.Profile, o *Options) *Graph {
|
|
if o.CallTree {
|
|
return newTree(prof, o)
|
|
}
|
|
g, _ := newGraph(prof, o)
|
|
return g
|
|
}
|
|
|
|
// newGraph computes a graph from a profile. It returns the graph, and
|
|
// a map from the profile location indices to the corresponding graph
|
|
// nodes.
|
|
func newGraph(prof *profile.Profile, o *Options) (*Graph, map[uint64]Nodes) {
|
|
nodes, locationMap := CreateNodes(prof, o)
|
|
for _, sample := range prof.Sample {
|
|
var w, dw int64
|
|
w = o.SampleValue(sample.Value)
|
|
if o.SampleMeanDivisor != nil {
|
|
dw = o.SampleMeanDivisor(sample.Value)
|
|
}
|
|
if dw == 0 && w == 0 {
|
|
continue
|
|
}
|
|
seenNode := make(map[*Node]bool, len(sample.Location))
|
|
seenEdge := make(map[nodePair]bool, len(sample.Location))
|
|
var parent *Node
|
|
// A residual edge goes over one or more nodes that were not kept.
|
|
residual := false
|
|
|
|
labels := joinLabels(sample)
|
|
// Group the sample frames, based on a global map.
|
|
for i := len(sample.Location) - 1; i >= 0; i-- {
|
|
l := sample.Location[i]
|
|
locNodes := locationMap[l.ID]
|
|
for ni := len(locNodes) - 1; ni >= 0; ni-- {
|
|
n := locNodes[ni]
|
|
if n == nil {
|
|
residual = true
|
|
continue
|
|
}
|
|
// Add cum weight to all nodes in stack, avoiding double counting.
|
|
if _, ok := seenNode[n]; !ok {
|
|
seenNode[n] = true
|
|
n.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, false)
|
|
}
|
|
// Update edge weights for all edges in stack, avoiding double counting.
|
|
if _, ok := seenEdge[nodePair{n, parent}]; !ok && parent != nil && n != parent {
|
|
seenEdge[nodePair{n, parent}] = true
|
|
parent.AddToEdgeDiv(n, dw, w, residual, ni != len(locNodes)-1)
|
|
}
|
|
parent = n
|
|
residual = false
|
|
}
|
|
}
|
|
if parent != nil && !residual {
|
|
// Add flat weight to leaf node.
|
|
parent.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, true)
|
|
}
|
|
}
|
|
|
|
return selectNodesForGraph(nodes, o.DropNegative), locationMap
|
|
}
|
|
|
|
func selectNodesForGraph(nodes Nodes, dropNegative bool) *Graph {
|
|
// Collect nodes into a graph.
|
|
gNodes := make(Nodes, 0, len(nodes))
|
|
for _, n := range nodes {
|
|
if n == nil {
|
|
continue
|
|
}
|
|
if n.Cum == 0 && n.Flat == 0 {
|
|
continue
|
|
}
|
|
if dropNegative && isNegative(n) {
|
|
continue
|
|
}
|
|
gNodes = append(gNodes, n)
|
|
}
|
|
return &Graph{gNodes}
|
|
}
|
|
|
|
type nodePair struct {
|
|
src, dest *Node
|
|
}
|
|
|
|
func newTree(prof *profile.Profile, o *Options) (g *Graph) {
|
|
parentNodeMap := make(map[*Node]NodeMap, len(prof.Sample))
|
|
for _, sample := range prof.Sample {
|
|
var w, dw int64
|
|
w = o.SampleValue(sample.Value)
|
|
if o.SampleMeanDivisor != nil {
|
|
dw = o.SampleMeanDivisor(sample.Value)
|
|
}
|
|
if dw == 0 && w == 0 {
|
|
continue
|
|
}
|
|
var parent *Node
|
|
labels := joinLabels(sample)
|
|
// Group the sample frames, based on a per-node map.
|
|
for i := len(sample.Location) - 1; i >= 0; i-- {
|
|
l := sample.Location[i]
|
|
lines := l.Line
|
|
if len(lines) == 0 {
|
|
lines = []profile.Line{{}} // Create empty line to include location info.
|
|
}
|
|
for lidx := len(lines) - 1; lidx >= 0; lidx-- {
|
|
nodeMap := parentNodeMap[parent]
|
|
if nodeMap == nil {
|
|
nodeMap = make(NodeMap)
|
|
parentNodeMap[parent] = nodeMap
|
|
}
|
|
n := nodeMap.findOrInsertLine(l, lines[lidx], o)
|
|
if n == nil {
|
|
continue
|
|
}
|
|
n.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, false)
|
|
if parent != nil {
|
|
parent.AddToEdgeDiv(n, dw, w, false, lidx != len(lines)-1)
|
|
}
|
|
parent = n
|
|
}
|
|
}
|
|
if parent != nil {
|
|
parent.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, true)
|
|
}
|
|
}
|
|
|
|
nodes := make(Nodes, len(prof.Location))
|
|
for _, nm := range parentNodeMap {
|
|
nodes = append(nodes, nm.nodes()...)
|
|
}
|
|
return selectNodesForGraph(nodes, o.DropNegative)
|
|
}
|
|
|
|
// ShortenFunctionName returns a shortened version of a function's name.
|
|
func ShortenFunctionName(f string) string {
|
|
for _, re := range []*regexp.Regexp{goRegExp, javaRegExp, cppRegExp} {
|
|
if matches := re.FindStringSubmatch(f); len(matches) >= 2 {
|
|
return strings.Join(matches[1:], "")
|
|
}
|
|
}
|
|
return f
|
|
}
|
|
|
|
// TrimTree trims a Graph in forest form, keeping only the nodes in kept. This
|
|
// will not work correctly if even a single node has multiple parents.
|
|
func (g *Graph) TrimTree(kept NodePtrSet) {
|
|
// Creates a new list of nodes
|
|
oldNodes := g.Nodes
|
|
g.Nodes = make(Nodes, 0, len(kept))
|
|
|
|
for _, cur := range oldNodes {
|
|
// A node may not have multiple parents
|
|
if len(cur.In) > 1 {
|
|
panic("TrimTree only works on trees")
|
|
}
|
|
|
|
// If a node should be kept, add it to the new list of nodes
|
|
if _, ok := kept[cur]; ok {
|
|
g.Nodes = append(g.Nodes, cur)
|
|
continue
|
|
}
|
|
|
|
// If a node has no parents, then delete all of the in edges of its
|
|
// children to make them each roots of their own trees.
|
|
if len(cur.In) == 0 {
|
|
for _, outEdge := range cur.Out {
|
|
delete(outEdge.Dest.In, cur)
|
|
}
|
|
continue
|
|
}
|
|
|
|
// Get the parent. This works since at this point cur.In must contain only
|
|
// one element.
|
|
if len(cur.In) != 1 {
|
|
panic("Get parent assertion failed. cur.In expected to be of length 1.")
|
|
}
|
|
var parent *Node
|
|
for _, edge := range cur.In {
|
|
parent = edge.Src
|
|
}
|
|
|
|
parentEdgeInline := parent.Out[cur].Inline
|
|
|
|
// Remove the edge from the parent to this node
|
|
delete(parent.Out, cur)
|
|
|
|
// Reconfigure every edge from the current node to now begin at the parent.
|
|
for _, outEdge := range cur.Out {
|
|
child := outEdge.Dest
|
|
|
|
delete(child.In, cur)
|
|
child.In[parent] = outEdge
|
|
parent.Out[child] = outEdge
|
|
|
|
outEdge.Src = parent
|
|
outEdge.Residual = true
|
|
// If the edge from the parent to the current node and the edge from the
|
|
// current node to the child are both inline, then this resulting residual
|
|
// edge should also be inline
|
|
outEdge.Inline = parentEdgeInline && outEdge.Inline
|
|
}
|
|
}
|
|
g.RemoveRedundantEdges()
|
|
}
|
|
|
|
func joinLabels(s *profile.Sample) string {
|
|
if len(s.Label) == 0 {
|
|
return ""
|
|
}
|
|
|
|
var labels []string
|
|
for key, vals := range s.Label {
|
|
for _, v := range vals {
|
|
labels = append(labels, key+":"+v)
|
|
}
|
|
}
|
|
sort.Strings(labels)
|
|
return strings.Join(labels, `\n`)
|
|
}
|
|
|
|
// isNegative returns true if the node is considered as "negative" for the
|
|
// purposes of drop_negative.
|
|
func isNegative(n *Node) bool {
|
|
switch {
|
|
case n.Flat < 0:
|
|
return true
|
|
case n.Flat == 0 && n.Cum < 0:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// CreateNodes creates graph nodes for all locations in a profile. It
|
|
// returns set of all nodes, plus a mapping of each location to the
|
|
// set of corresponding nodes (one per location.Line).
|
|
func CreateNodes(prof *profile.Profile, o *Options) (Nodes, map[uint64]Nodes) {
|
|
locations := make(map[uint64]Nodes, len(prof.Location))
|
|
nm := make(NodeMap, len(prof.Location))
|
|
for _, l := range prof.Location {
|
|
lines := l.Line
|
|
if len(lines) == 0 {
|
|
lines = []profile.Line{{}} // Create empty line to include location info.
|
|
}
|
|
nodes := make(Nodes, len(lines))
|
|
for ln := range lines {
|
|
nodes[ln] = nm.findOrInsertLine(l, lines[ln], o)
|
|
}
|
|
locations[l.ID] = nodes
|
|
}
|
|
return nm.nodes(), locations
|
|
}
|
|
|
|
func (nm NodeMap) nodes() Nodes {
|
|
nodes := make(Nodes, 0, len(nm))
|
|
for _, n := range nm {
|
|
nodes = append(nodes, n)
|
|
}
|
|
return nodes
|
|
}
|
|
|
|
func (nm NodeMap) findOrInsertLine(l *profile.Location, li profile.Line, o *Options) *Node {
|
|
var objfile string
|
|
if m := l.Mapping; m != nil && m.File != "" {
|
|
objfile = m.File
|
|
}
|
|
|
|
if ni := nodeInfo(l, li, objfile, o); ni != nil {
|
|
return nm.FindOrInsertNode(*ni, o.KeptNodes)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func nodeInfo(l *profile.Location, line profile.Line, objfile string, o *Options) *NodeInfo {
|
|
if line.Function == nil {
|
|
return &NodeInfo{Address: l.Address, Objfile: objfile}
|
|
}
|
|
ni := &NodeInfo{
|
|
Address: l.Address,
|
|
Lineno: int(line.Line),
|
|
Name: line.Function.Name,
|
|
}
|
|
if fname := line.Function.Filename; fname != "" {
|
|
ni.File = filepath.Clean(fname)
|
|
}
|
|
if o.OrigFnNames {
|
|
ni.OrigName = line.Function.SystemName
|
|
}
|
|
if o.ObjNames || (ni.Name == "" && ni.OrigName == "") {
|
|
ni.Objfile = objfile
|
|
ni.StartLine = int(line.Function.StartLine)
|
|
}
|
|
return ni
|
|
}
|
|
|
|
type tags struct {
|
|
t []*Tag
|
|
flat bool
|
|
}
|
|
|
|
func (t tags) Len() int { return len(t.t) }
|
|
func (t tags) Swap(i, j int) { t.t[i], t.t[j] = t.t[j], t.t[i] }
|
|
func (t tags) Less(i, j int) bool {
|
|
if !t.flat {
|
|
if t.t[i].Cum != t.t[j].Cum {
|
|
return abs64(t.t[i].Cum) > abs64(t.t[j].Cum)
|
|
}
|
|
}
|
|
if t.t[i].Flat != t.t[j].Flat {
|
|
return abs64(t.t[i].Flat) > abs64(t.t[j].Flat)
|
|
}
|
|
return t.t[i].Name < t.t[j].Name
|
|
}
|
|
|
|
// Sum adds the flat and cum values of a set of nodes.
|
|
func (ns Nodes) Sum() (flat int64, cum int64) {
|
|
for _, n := range ns {
|
|
flat += n.Flat
|
|
cum += n.Cum
|
|
}
|
|
return
|
|
}
|
|
|
|
func (n *Node) addSample(dw, w int64, labels string, numLabel map[string][]int64, numUnit map[string][]string, format func(int64, string) string, flat bool) {
|
|
// Update sample value
|
|
if flat {
|
|
n.FlatDiv += dw
|
|
n.Flat += w
|
|
} else {
|
|
n.CumDiv += dw
|
|
n.Cum += w
|
|
}
|
|
|
|
// Add string tags
|
|
if labels != "" {
|
|
t := n.LabelTags.findOrAddTag(labels, "", 0)
|
|
if flat {
|
|
t.FlatDiv += dw
|
|
t.Flat += w
|
|
} else {
|
|
t.CumDiv += dw
|
|
t.Cum += w
|
|
}
|
|
}
|
|
|
|
numericTags := n.NumericTags[labels]
|
|
if numericTags == nil {
|
|
numericTags = TagMap{}
|
|
n.NumericTags[labels] = numericTags
|
|
}
|
|
// Add numeric tags
|
|
if format == nil {
|
|
format = defaultLabelFormat
|
|
}
|
|
for k, nvals := range numLabel {
|
|
units := numUnit[k]
|
|
for i, v := range nvals {
|
|
var t *Tag
|
|
if len(units) > 0 {
|
|
t = numericTags.findOrAddTag(format(v, units[i]), units[i], v)
|
|
} else {
|
|
t = numericTags.findOrAddTag(format(v, k), k, v)
|
|
}
|
|
if flat {
|
|
t.FlatDiv += dw
|
|
t.Flat += w
|
|
} else {
|
|
t.CumDiv += dw
|
|
t.Cum += w
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func defaultLabelFormat(v int64, key string) string {
|
|
return strconv.FormatInt(v, 10)
|
|
}
|
|
|
|
func (m TagMap) findOrAddTag(label, unit string, value int64) *Tag {
|
|
l := m[label]
|
|
if l == nil {
|
|
l = &Tag{
|
|
Name: label,
|
|
Unit: unit,
|
|
Value: value,
|
|
}
|
|
m[label] = l
|
|
}
|
|
return l
|
|
}
|
|
|
|
// String returns a text representation of a graph, for debugging purposes.
|
|
func (g *Graph) String() string {
|
|
var s []string
|
|
|
|
nodeIndex := make(map[*Node]int, len(g.Nodes))
|
|
|
|
for i, n := range g.Nodes {
|
|
nodeIndex[n] = i + 1
|
|
}
|
|
|
|
for i, n := range g.Nodes {
|
|
name := n.Info.PrintableName()
|
|
var in, out []int
|
|
|
|
for _, from := range n.In {
|
|
in = append(in, nodeIndex[from.Src])
|
|
}
|
|
for _, to := range n.Out {
|
|
out = append(out, nodeIndex[to.Dest])
|
|
}
|
|
s = append(s, fmt.Sprintf("%d: %s[flat=%d cum=%d] %x -> %v ", i+1, name, n.Flat, n.Cum, in, out))
|
|
}
|
|
return strings.Join(s, "\n")
|
|
}
|
|
|
|
// DiscardLowFrequencyNodes returns a set of the nodes at or over a
|
|
// specific cum value cutoff.
|
|
func (g *Graph) DiscardLowFrequencyNodes(nodeCutoff int64) NodeSet {
|
|
return makeNodeSet(g.Nodes, nodeCutoff)
|
|
}
|
|
|
|
// DiscardLowFrequencyNodePtrs returns a NodePtrSet of nodes at or over a
|
|
// specific cum value cutoff.
|
|
func (g *Graph) DiscardLowFrequencyNodePtrs(nodeCutoff int64) NodePtrSet {
|
|
cutNodes := getNodesAboveCumCutoff(g.Nodes, nodeCutoff)
|
|
kept := make(NodePtrSet, len(cutNodes))
|
|
for _, n := range cutNodes {
|
|
kept[n] = true
|
|
}
|
|
return kept
|
|
}
|
|
|
|
func makeNodeSet(nodes Nodes, nodeCutoff int64) NodeSet {
|
|
cutNodes := getNodesAboveCumCutoff(nodes, nodeCutoff)
|
|
kept := make(NodeSet, len(cutNodes))
|
|
for _, n := range cutNodes {
|
|
kept[n.Info] = true
|
|
}
|
|
return kept
|
|
}
|
|
|
|
// getNodesAboveCumCutoff returns all the nodes which have a Cum value greater
|
|
// than or equal to cutoff.
|
|
func getNodesAboveCumCutoff(nodes Nodes, nodeCutoff int64) Nodes {
|
|
cutoffNodes := make(Nodes, 0, len(nodes))
|
|
for _, n := range nodes {
|
|
if abs64(n.Cum) < nodeCutoff {
|
|
continue
|
|
}
|
|
cutoffNodes = append(cutoffNodes, n)
|
|
}
|
|
return cutoffNodes
|
|
}
|
|
|
|
// TrimLowFrequencyTags removes tags that have less than
|
|
// the specified weight.
|
|
func (g *Graph) TrimLowFrequencyTags(tagCutoff int64) {
|
|
// Remove nodes with value <= total*nodeFraction
|
|
for _, n := range g.Nodes {
|
|
n.LabelTags = trimLowFreqTags(n.LabelTags, tagCutoff)
|
|
for s, nt := range n.NumericTags {
|
|
n.NumericTags[s] = trimLowFreqTags(nt, tagCutoff)
|
|
}
|
|
}
|
|
}
|
|
|
|
func trimLowFreqTags(tags TagMap, minValue int64) TagMap {
|
|
kept := TagMap{}
|
|
for s, t := range tags {
|
|
if abs64(t.Flat) >= minValue || abs64(t.Cum) >= minValue {
|
|
kept[s] = t
|
|
}
|
|
}
|
|
return kept
|
|
}
|
|
|
|
// TrimLowFrequencyEdges removes edges that have less than
|
|
// the specified weight. Returns the number of edges removed
|
|
func (g *Graph) TrimLowFrequencyEdges(edgeCutoff int64) int {
|
|
var droppedEdges int
|
|
for _, n := range g.Nodes {
|
|
for src, e := range n.In {
|
|
if abs64(e.Weight) < edgeCutoff {
|
|
delete(n.In, src)
|
|
delete(src.Out, n)
|
|
droppedEdges++
|
|
}
|
|
}
|
|
}
|
|
return droppedEdges
|
|
}
|
|
|
|
// SortNodes sorts the nodes in a graph based on a specific heuristic.
|
|
func (g *Graph) SortNodes(cum bool, visualMode bool) {
|
|
// Sort nodes based on requested mode
|
|
switch {
|
|
case visualMode:
|
|
// Specialized sort to produce a more visually-interesting graph
|
|
g.Nodes.Sort(EntropyOrder)
|
|
case cum:
|
|
g.Nodes.Sort(CumNameOrder)
|
|
default:
|
|
g.Nodes.Sort(FlatNameOrder)
|
|
}
|
|
}
|
|
|
|
// SelectTopNodePtrs returns a set of the top maxNodes *Node in a graph.
|
|
func (g *Graph) SelectTopNodePtrs(maxNodes int, visualMode bool) NodePtrSet {
|
|
set := make(NodePtrSet)
|
|
for _, node := range g.selectTopNodes(maxNodes, visualMode) {
|
|
set[node] = true
|
|
}
|
|
return set
|
|
}
|
|
|
|
// SelectTopNodes returns a set of the top maxNodes nodes in a graph.
|
|
func (g *Graph) SelectTopNodes(maxNodes int, visualMode bool) NodeSet {
|
|
return makeNodeSet(g.selectTopNodes(maxNodes, visualMode), 0)
|
|
}
|
|
|
|
// selectTopNodes returns a slice of the top maxNodes nodes in a graph.
|
|
func (g *Graph) selectTopNodes(maxNodes int, visualMode bool) Nodes {
|
|
if maxNodes > 0 {
|
|
if visualMode {
|
|
var count int
|
|
// If generating a visual graph, count tags as nodes. Update
|
|
// maxNodes to account for them.
|
|
for i, n := range g.Nodes {
|
|
tags := countTags(n)
|
|
if tags > maxNodelets {
|
|
tags = maxNodelets
|
|
}
|
|
if count += tags + 1; count >= maxNodes {
|
|
maxNodes = i + 1
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if maxNodes > len(g.Nodes) {
|
|
maxNodes = len(g.Nodes)
|
|
}
|
|
return g.Nodes[:maxNodes]
|
|
}
|
|
|
|
// countTags counts the tags with flat count. This underestimates the
|
|
// number of tags being displayed, but in practice is close enough.
|
|
func countTags(n *Node) int {
|
|
count := 0
|
|
for _, e := range n.LabelTags {
|
|
if e.Flat != 0 {
|
|
count++
|
|
}
|
|
}
|
|
for _, t := range n.NumericTags {
|
|
for _, e := range t {
|
|
if e.Flat != 0 {
|
|
count++
|
|
}
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
// RemoveRedundantEdges removes residual edges if the destination can
|
|
// be reached through another path. This is done to simplify the graph
|
|
// while preserving connectivity.
|
|
func (g *Graph) RemoveRedundantEdges() {
|
|
// Walk the nodes and outgoing edges in reverse order to prefer
|
|
// removing edges with the lowest weight.
|
|
for i := len(g.Nodes); i > 0; i-- {
|
|
n := g.Nodes[i-1]
|
|
in := n.In.Sort()
|
|
for j := len(in); j > 0; j-- {
|
|
e := in[j-1]
|
|
if !e.Residual {
|
|
// Do not remove edges heavier than a non-residual edge, to
|
|
// avoid potential confusion.
|
|
break
|
|
}
|
|
if isRedundantEdge(e) {
|
|
delete(e.Src.Out, e.Dest)
|
|
delete(e.Dest.In, e.Src)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// isRedundantEdge determines if there is a path that allows e.Src
|
|
// to reach e.Dest after removing e.
|
|
func isRedundantEdge(e *Edge) bool {
|
|
src, n := e.Src, e.Dest
|
|
seen := map[*Node]bool{n: true}
|
|
queue := Nodes{n}
|
|
for len(queue) > 0 {
|
|
n := queue[0]
|
|
queue = queue[1:]
|
|
for _, ie := range n.In {
|
|
if e == ie || seen[ie.Src] {
|
|
continue
|
|
}
|
|
if ie.Src == src {
|
|
return true
|
|
}
|
|
seen[ie.Src] = true
|
|
queue = append(queue, ie.Src)
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// nodeSorter is a mechanism used to allow a report to be sorted
|
|
// in different ways.
|
|
type nodeSorter struct {
|
|
rs Nodes
|
|
less func(l, r *Node) bool
|
|
}
|
|
|
|
func (s nodeSorter) Len() int { return len(s.rs) }
|
|
func (s nodeSorter) Swap(i, j int) { s.rs[i], s.rs[j] = s.rs[j], s.rs[i] }
|
|
func (s nodeSorter) Less(i, j int) bool { return s.less(s.rs[i], s.rs[j]) }
|
|
|
|
// Sort reorders a slice of nodes based on the specified ordering
|
|
// criteria. The result is sorted in decreasing order for (absolute)
|
|
// numeric quantities, alphabetically for text, and increasing for
|
|
// addresses.
|
|
func (ns Nodes) Sort(o NodeOrder) error {
|
|
var s nodeSorter
|
|
|
|
switch o {
|
|
case FlatNameOrder:
|
|
s = nodeSorter{ns,
|
|
func(l, r *Node) bool {
|
|
if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
|
|
return iv > jv
|
|
}
|
|
if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
|
|
return iv < jv
|
|
}
|
|
if iv, jv := abs64(l.Cum), abs64(r.Cum); iv != jv {
|
|
return iv > jv
|
|
}
|
|
return compareNodes(l, r)
|
|
},
|
|
}
|
|
case FlatCumNameOrder:
|
|
s = nodeSorter{ns,
|
|
func(l, r *Node) bool {
|
|
if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
|
|
return iv > jv
|
|
}
|
|
if iv, jv := abs64(l.Cum), abs64(r.Cum); iv != jv {
|
|
return iv > jv
|
|
}
|
|
if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
|
|
return iv < jv
|
|
}
|
|
return compareNodes(l, r)
|
|
},
|
|
}
|
|
case NameOrder:
|
|
s = nodeSorter{ns,
|
|
func(l, r *Node) bool {
|
|
if iv, jv := l.Info.Name, r.Info.Name; iv != jv {
|
|
return iv < jv
|
|
}
|
|
return compareNodes(l, r)
|
|
},
|
|
}
|
|
case FileOrder:
|
|
s = nodeSorter{ns,
|
|
func(l, r *Node) bool {
|
|
if iv, jv := l.Info.File, r.Info.File; iv != jv {
|
|
return iv < jv
|
|
}
|
|
if iv, jv := l.Info.StartLine, r.Info.StartLine; iv != jv {
|
|
return iv < jv
|
|
}
|
|
return compareNodes(l, r)
|
|
},
|
|
}
|
|
case AddressOrder:
|
|
s = nodeSorter{ns,
|
|
func(l, r *Node) bool {
|
|
if iv, jv := l.Info.Address, r.Info.Address; iv != jv {
|
|
return iv < jv
|
|
}
|
|
return compareNodes(l, r)
|
|
},
|
|
}
|
|
case CumNameOrder, EntropyOrder:
|
|
// Hold scoring for score-based ordering
|
|
var score map[*Node]int64
|
|
scoreOrder := func(l, r *Node) bool {
|
|
if iv, jv := abs64(score[l]), abs64(score[r]); iv != jv {
|
|
return iv > jv
|
|
}
|
|
if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
|
|
return iv < jv
|
|
}
|
|
if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
|
|
return iv > jv
|
|
}
|
|
return compareNodes(l, r)
|
|
}
|
|
|
|
switch o {
|
|
case CumNameOrder:
|
|
score = make(map[*Node]int64, len(ns))
|
|
for _, n := range ns {
|
|
score[n] = n.Cum
|
|
}
|
|
s = nodeSorter{ns, scoreOrder}
|
|
case EntropyOrder:
|
|
score = make(map[*Node]int64, len(ns))
|
|
for _, n := range ns {
|
|
score[n] = entropyScore(n)
|
|
}
|
|
s = nodeSorter{ns, scoreOrder}
|
|
}
|
|
default:
|
|
return fmt.Errorf("report: unrecognized sort ordering: %d", o)
|
|
}
|
|
sort.Sort(s)
|
|
return nil
|
|
}
|
|
|
|
// compareNodes compares two nodes to provide a deterministic ordering
|
|
// between them. Two nodes cannot have the same Node.Info value.
|
|
func compareNodes(l, r *Node) bool {
|
|
return fmt.Sprint(l.Info) < fmt.Sprint(r.Info)
|
|
}
|
|
|
|
// entropyScore computes a score for a node representing how important
|
|
// it is to include this node on a graph visualization. It is used to
|
|
// sort the nodes and select which ones to display if we have more
|
|
// nodes than desired in the graph. This number is computed by looking
|
|
// at the flat and cum weights of the node and the incoming/outgoing
|
|
// edges. The fundamental idea is to penalize nodes that have a simple
|
|
// fallthrough from their incoming to the outgoing edge.
|
|
func entropyScore(n *Node) int64 {
|
|
score := float64(0)
|
|
|
|
if len(n.In) == 0 {
|
|
score++ // Favor entry nodes
|
|
} else {
|
|
score += edgeEntropyScore(n, n.In, 0)
|
|
}
|
|
|
|
if len(n.Out) == 0 {
|
|
score++ // Favor leaf nodes
|
|
} else {
|
|
score += edgeEntropyScore(n, n.Out, n.Flat)
|
|
}
|
|
|
|
return int64(score*float64(n.Cum)) + n.Flat
|
|
}
|
|
|
|
// edgeEntropyScore computes the entropy value for a set of edges
|
|
// coming in or out of a node. Entropy (as defined in information
|
|
// theory) refers to the amount of information encoded by the set of
|
|
// edges. A set of edges that have a more interesting distribution of
|
|
// samples gets a higher score.
|
|
func edgeEntropyScore(n *Node, edges EdgeMap, self int64) float64 {
|
|
score := float64(0)
|
|
total := self
|
|
for _, e := range edges {
|
|
if e.Weight > 0 {
|
|
total += abs64(e.Weight)
|
|
}
|
|
}
|
|
if total != 0 {
|
|
for _, e := range edges {
|
|
frac := float64(abs64(e.Weight)) / float64(total)
|
|
score += -frac * math.Log2(frac)
|
|
}
|
|
if self > 0 {
|
|
frac := float64(abs64(self)) / float64(total)
|
|
score += -frac * math.Log2(frac)
|
|
}
|
|
}
|
|
return score
|
|
}
|
|
|
|
// NodeOrder sets the ordering for a Sort operation
|
|
type NodeOrder int
|
|
|
|
// Sorting options for node sort.
|
|
const (
|
|
FlatNameOrder NodeOrder = iota
|
|
FlatCumNameOrder
|
|
CumNameOrder
|
|
NameOrder
|
|
FileOrder
|
|
AddressOrder
|
|
EntropyOrder
|
|
)
|
|
|
|
// Sort returns a slice of the edges in the map, in a consistent
|
|
// order. The sort order is first based on the edge weight
|
|
// (higher-to-lower) and then by the node names to avoid flakiness.
|
|
func (e EdgeMap) Sort() []*Edge {
|
|
el := make(edgeList, 0, len(e))
|
|
for _, w := range e {
|
|
el = append(el, w)
|
|
}
|
|
|
|
sort.Sort(el)
|
|
return el
|
|
}
|
|
|
|
// Sum returns the total weight for a set of nodes.
|
|
func (e EdgeMap) Sum() int64 {
|
|
var ret int64
|
|
for _, edge := range e {
|
|
ret += edge.Weight
|
|
}
|
|
return ret
|
|
}
|
|
|
|
type edgeList []*Edge
|
|
|
|
func (el edgeList) Len() int {
|
|
return len(el)
|
|
}
|
|
|
|
func (el edgeList) Less(i, j int) bool {
|
|
if el[i].Weight != el[j].Weight {
|
|
return abs64(el[i].Weight) > abs64(el[j].Weight)
|
|
}
|
|
|
|
from1 := el[i].Src.Info.PrintableName()
|
|
from2 := el[j].Src.Info.PrintableName()
|
|
if from1 != from2 {
|
|
return from1 < from2
|
|
}
|
|
|
|
to1 := el[i].Dest.Info.PrintableName()
|
|
to2 := el[j].Dest.Info.PrintableName()
|
|
|
|
return to1 < to2
|
|
}
|
|
|
|
func (el edgeList) Swap(i, j int) {
|
|
el[i], el[j] = el[j], el[i]
|
|
}
|
|
|
|
func abs64(i int64) int64 {
|
|
if i < 0 {
|
|
return -i
|
|
}
|
|
return i
|
|
}
|