/* Copyright (c) 2016-2020 Peter Antypas This file is part of the MAIANAâ„¢ transponder firmware. The firmware is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see */ #include "bsp.hpp" #include #include "printf_serial.h" #include #if BOARD_REV==50 SPI_HandleTypeDef hspi1; IWDG_HandleTypeDef hiwdg; UART_HandleTypeDef huart2; UART_HandleTypeDef huart1; TIM_HandleTypeDef htim2; void SystemClock_Config(); char_input_cb gnssInputCallback = nullptr; char_input_cb terminalInputCallback = nullptr; irq_callback ppsCallback = nullptr; irq_callback sotdmaCallback = nullptr; irq_callback trxClockCallback = nullptr; irq_callback rxClockCallback = nullptr; #define STATION_DATA_ADDRESS 0x08019000 typedef struct { GPIO_TypeDef *port; GPIO_InitTypeDef gpio; GPIO_PinState init; } GPIO; static const GPIO __gpios[] = { {RFSW_CTRL_PORT, {RFSW_CTRL_PIN, GPIO_MODE_OUTPUT_PP, GPIO_NOPULL, GPIO_SPEED_LOW, 0}, GPIO_PIN_SET}, {TRX_IC_CLK_PORT, {TRX_IC_CLK_PIN, GPIO_MODE_IT_RISING, GPIO_NOPULL, GPIO_SPEED_LOW, 0}, GPIO_PIN_RESET}, {GNSS_1PPS_PORT, {GNSS_1PPS_PIN, GPIO_MODE_IT_RISING, GPIO_NOPULL, GPIO_SPEED_LOW, 0}, GPIO_PIN_RESET}, {GNSS_NMEA_RX_PORT, {GNSS_NMEA_RX_PIN, GPIO_MODE_AF_PP, GPIO_PULLUP, GPIO_SPEED_LOW, GPIO_AF7_USART2}, GPIO_PIN_RESET}, {CS1_PORT, {CS1_PIN, GPIO_MODE_OUTPUT_PP, GPIO_NOPULL, GPIO_SPEED_HIGH, 0}, GPIO_PIN_SET}, {SCK_PORT, {SCK_PIN, GPIO_MODE_AF_PP, GPIO_NOPULL, GPIO_SPEED_HIGH, GPIO_AF5_SPI1}, GPIO_PIN_SET}, {MISO_PORT, {MISO_PIN, GPIO_MODE_AF_PP, GPIO_NOPULL, GPIO_SPEED_HIGH, GPIO_AF5_SPI1}, GPIO_PIN_SET}, {MOSI_PORT, {MOSI_PIN, GPIO_MODE_AF_PP, GPIO_NOPULL, GPIO_SPEED_HIGH, GPIO_AF5_SPI1}, GPIO_PIN_SET}, {SDN1_PORT, {SDN1_PIN, GPIO_MODE_OUTPUT_PP, GPIO_NOPULL, GPIO_SPEED_LOW, 0}, GPIO_PIN_SET}, {TRX_IC_DATA_PORT, {TRX_IC_DATA_PIN, GPIO_MODE_INPUT, GPIO_NOPULL, GPIO_SPEED_LOW, 0}, GPIO_PIN_RESET}, {UART_TX_PORT, {UART_TX_PIN, GPIO_MODE_AF_PP, GPIO_PULLUP, GPIO_SPEED_LOW, GPIO_AF7_USART1}, GPIO_PIN_RESET}, {UART_RX_PORT, {UART_RX_PIN, GPIO_MODE_AF_PP, GPIO_PULLUP, GPIO_SPEED_LOW, GPIO_AF7_USART1}, GPIO_PIN_RESET}, {SDN2_PORT, {SDN2_PIN, GPIO_MODE_OUTPUT_PP, GPIO_NOPULL, GPIO_SPEED_LOW, 0}, GPIO_PIN_SET}, {RX_IC_CLK_PORT, {RX_IC_CLK_PIN, GPIO_MODE_IT_RISING, GPIO_NOPULL, GPIO_SPEED_LOW, 0}, GPIO_PIN_RESET}, {RX_IC_DATA_PORT, {RX_IC_DATA_PIN, GPIO_MODE_INPUT, GPIO_NOPULL, GPIO_SPEED_LOW, 0}, GPIO_PIN_RESET}, {PA_BIAS_PORT, {PA_BIAS_PIN, GPIO_MODE_OUTPUT_PP, GPIO_NOPULL, GPIO_SPEED_LOW, 0}, GPIO_PIN_RESET}, {CS2_PORT, {CS2_PIN, GPIO_MODE_OUTPUT_PP, GPIO_NOPULL, GPIO_SPEED_HIGH, 0}, GPIO_PIN_SET}, }; extern "C" { void Error_Handler(void) { printf_serial_now("[ERROR]\r\n"); printf_serial_now("[ERROR] ***** System error handler resetting *****\r\n"); NVIC_SystemReset(); } } void gpio_pin_init(); void bsp_hw_init() { HAL_Init(); SystemClock_Config(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_USART2_CLK_ENABLE(); __HAL_RCC_USART1_CLK_ENABLE(); __HAL_RCC_SPI1_CLK_ENABLE(); __HAL_RCC_TIM2_CLK_ENABLE(); gpio_pin_init(); // 1PPS signal HAL_NVIC_SetPriority(EXTI2_IRQn, 5, 0); HAL_NVIC_EnableIRQ(EXTI2_IRQn); // RF IC clock interrupts HAL_NVIC_SetPriority(EXTI1_IRQn, 5, 0); HAL_NVIC_EnableIRQ(EXTI1_IRQn); HAL_NVIC_SetPriority(EXTI3_IRQn, 5, 0); HAL_NVIC_EnableIRQ(EXTI3_IRQn); // USART1 (main UART) huart1.Instance = USART1; huart1.Init.BaudRate = 38400; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; HAL_UART_Init(&huart1); HAL_NVIC_SetPriority(USART1_IRQn, 6, 0); HAL_NVIC_EnableIRQ(USART1_IRQn); __HAL_UART_ENABLE_IT(&huart1, UART_IT_RXNE); // SPI hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; hspi1.Init.NSSPMode = SPI_NSS_PULSE_DISABLE; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } // Set both CS pins high HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_SET); __HAL_SPI_ENABLE(&hspi1); // USART2 (GNSS, RX only) huart2.Instance = USART2; huart2.Init.BaudRate = 9600; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; HAL_UART_Init(&huart2); HAL_NVIC_SetPriority(USART2_IRQn, 5, 0); HAL_NVIC_EnableIRQ(USART2_IRQn); __HAL_UART_ENABLE_IT(&huart2, UART_IT_RXNE); // TIM2 for SOTDMA (37.5Hz) uint32_t period = (SystemCoreClock / 37.5) - 1; __HAL_RCC_TIM2_CLK_ENABLE(); htim2.Instance = TIM2; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = period; htim2.Init.RepetitionCounter = 0; HAL_TIM_Base_Init(&htim2); HAL_NVIC_SetPriority(TIM2_IRQn, 5, 0); HAL_NVIC_EnableIRQ(TIM2_IRQn); } bool bsp_is_tx_disabled() { return false; } void SystemClock_Config() { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_PeriphCLKInitTypeDef PeriphClkInit; /**Initializes the CPU, AHB and APB bus clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 1; RCC_OscInitStruct.PLL.PLLN = 10; // 80 MHz //RCC_OscInitStruct.PLL.PLLN = 8; // 64 MHz //RCC_OscInitStruct.PLL.PLLN = 6; // 48 MHz RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /**Initializes the CPU, AHB and APB bus clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1; PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_HSI; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } /**Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) { Error_Handler(); } /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); /**Configure the Systick */ HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); } void gpio_pin_init() { for ( unsigned i = 0; i < sizeof __gpios / sizeof(GPIO); ++i ) { const GPIO* io = &__gpios[i]; HAL_GPIO_Init(io->port, (GPIO_InitTypeDef*)&io->gpio); if ( io->gpio.Mode == GPIO_MODE_OUTPUT_PP || io->gpio.Mode == GPIO_MODE_OUTPUT_OD ) { HAL_GPIO_WritePin(io->port, io->gpio.Pin, io->init); } } } void HAL_MspInit(void) { /* USER CODE BEGIN MspInit 0 */ /* USER CODE END MspInit 0 */ __HAL_RCC_SYSCFG_CLK_ENABLE(); __HAL_RCC_PWR_CLK_ENABLE(); HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); /* System interrupt init*/ /* MemoryManagement_IRQn interrupt configuration */ HAL_NVIC_SetPriority(MemoryManagement_IRQn, 0, 0); /* BusFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(BusFault_IRQn, 0, 0); /* UsageFault_IRQn interrupt configuration */ HAL_NVIC_SetPriority(UsageFault_IRQn, 0, 0); /* SVCall_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SVCall_IRQn, 0, 0); /* DebugMonitor_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DebugMonitor_IRQn, 0, 0); /* PendSV_IRQn interrupt configuration */ HAL_NVIC_SetPriority(PendSV_IRQn, 0, 0); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); /* USER CODE BEGIN MspInit 1 */ /* USER CODE END MspInit 1 */ } void bsp_set_rx_mode() { HAL_GPIO_WritePin(PA_BIAS_PORT, PA_BIAS_PIN, GPIO_PIN_RESET); // Kill the RF MOSFET bias voltage HAL_GPIO_WritePin(RFSW_CTRL_PORT, RFSW_CTRL_PIN, GPIO_PIN_SET); // RF switch in RX position GPIO_InitTypeDef gpio; gpio.Pin = TRX_IC_DATA_PIN; gpio.Mode = GPIO_MODE_INPUT; gpio.Speed = GPIO_SPEED_FREQ_LOW; gpio.Pull = GPIO_NOPULL; HAL_GPIO_Init(TRX_IC_DATA_PORT, &gpio); } void bsp_set_tx_mode() { GPIO_InitTypeDef gpio; gpio.Pin = TRX_IC_DATA_PIN; gpio.Mode = GPIO_MODE_OUTPUT_PP; gpio.Speed = GPIO_SPEED_FREQ_LOW; gpio.Pull = GPIO_NOPULL; HAL_GPIO_Init(TRX_IC_DATA_PORT, &gpio); HAL_GPIO_WritePin(PA_BIAS_PORT, PA_BIAS_PIN, GPIO_PIN_SET); // RF MOSFET bias voltage HAL_GPIO_WritePin(RFSW_CTRL_PORT, RFSW_CTRL_PIN, GPIO_PIN_RESET); // RF switch in TX position } void bsp_gnss_on() { // Do nothing } void bsp_gnss_off() { // Do nothing } void USART_putc(USART_TypeDef* USARTx, char c) { while ( !(USARTx->ISR & USART_ISR_TXE) ) ; USARTx->TDR = c; } void bsp_write_char(char c) { USART_putc(USART1, c); } void bsp_write_string(const char *s) { for ( int i = 0; s[i] != 0; ++i ) USART_putc(USART1, s[i]); } void bsp_start_wdt() { IWDG_InitTypeDef iwdg; iwdg.Prescaler = IWDG_PRESCALER_64; iwdg.Reload = 0x0fff; iwdg.Window = 0x0fff; hiwdg.Instance = IWDG; hiwdg.Init = iwdg; HAL_IWDG_Init(&hiwdg); } void bsp_refresh_wdt() { HAL_IWDG_Refresh(&hiwdg); } void bsp_set_gnss_input_callback(char_input_cb cb) { gnssInputCallback = cb; } void bsp_set_terminal_input_callback(char_input_cb cb) { terminalInputCallback = cb; } void bsp_start_sotdma_timer() { HAL_TIM_Base_Start_IT(&htim2); } void bsp_stop_sotdma_timer() { HAL_TIM_Base_Stop_IT(&htim2); } void bsp_set_gnss_1pps_callback(irq_callback cb) { ppsCallback = cb; } void bsp_set_trx_clk_callback(irq_callback cb) { trxClockCallback = cb; } void bsp_set_rx_clk_callback(irq_callback cb) { rxClockCallback = cb; } void bsp_set_gnss_sotdma_timer_callback(irq_callback cb) { sotdmaCallback = cb; } uint32_t bsp_get_sotdma_timer_value() { return TIM2->CNT; } void bsp_set_sotdma_timer_value(uint32_t v) { TIM2->CNT = v; } uint32_t bsp_get_system_clock() { return SystemCoreClock; } uint8_t bsp_tx_spi_byte(uint8_t data) { uint8_t result = 0; HAL_SPI_TransmitReceive(&hspi1, &data, &result, 1, 10); return result; } bool bsp_erase_flash_page(uint32_t address) { if ( (address < FLASH_BASE) || (address % FLASH_PAGE_SIZE) ) return false; bool result = true; DBG("Erasing page at %.8x\r\n\r\n", (unsigned)address); HAL_StatusTypeDef status = HAL_FLASH_Unlock(); if ( status != HAL_OK ) { // Looks like only way for this to happen is for the flash to be unlocked HAL_FLASH_Lock(); DBG("Couldn't unlock flash\r\n"); return false; } uint32_t page = (address - FLASH_BASE) / FLASH_PAGE_SIZE; __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS); FLASH_EraseInitTypeDef erase; erase.TypeErase = FLASH_TYPEERASE_PAGES; erase.NbPages = 1; erase.Banks = FLASH_BANK_1; erase.Page = page; DBG("Calling HAL_FLASHEx_Erase() for page %d\r\n", (int)page); uint32_t errPage = 0xFFFFFFFF; status = HAL_FLASHEx_Erase(&erase, &errPage); if ( status != HAL_OK ) { //err = FLASH_ERASE_HAL_ERASE_FAILED; DBG("Page erase failed\r\n"); result = false; } else if ( errPage != 0xFFFFFFFF ) { //err = FLASH_ERASE_ERR_PAGE_RETURNED; DBG("Flash erase failed for page %.8x\r\n", (unsigned)errPage); result = false; } else { DBG("Verifying flash erase\r\n\r\n"); HAL_Delay(100); // Verify the data was in fact erased to all 0xFF for ( uint32_t i = address; i < address + FLASH_PAGE_SIZE; ++i ) { uint8_t *p = (uint8_t*)i; if ( *p != 0xFF ) { //err = FLASH_ERASE_FAILED_SILENT; result = false; DBG("Flash erase silent failure\r\n"); break; } } } HAL_FLASH_Lock(); return result; } bool bsp_erase_station_data() { return bsp_erase_flash_page(STATION_DATA_ADDRESS); } bool bsp_save_station_data(const StationData &data) { if ( !bsp_erase_flash_page(STATION_DATA_ADDRESS) ) return false; //return true; uint32_t pageAddress = STATION_DATA_ADDRESS; __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS); HAL_StatusTypeDef status = HAL_FLASH_Unlock(); if ( status != HAL_OK ) { // Huhh??? return false; } status = HAL_OK; uint64_t *p = (uint64_t*)&data; for ( uint32_t dw = 0; dw < sizeof(StationData) / 8; ++dw, ++p ) { status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, pageAddress + dw*8, *p); if ( status != HAL_OK ) break; } HAL_FLASH_Lock(); return status == HAL_OK; } void bsp_reboot() { NVIC_SystemReset(); } bool bsp_read_station_data(StationData &data) { memcpy(&data, (void*)STATION_DATA_ADDRESS, sizeof data); return data.magic == STATION_DATA_MAGIC; } void bsp_enter_dfu() { // Nothing here } extern "C" { void USART1_IRQHandler(void) { if ( __HAL_UART_GET_IT(&huart1, UART_IT_RXNE) ) { __HAL_UART_CLEAR_IT(&huart1, UART_IT_RXNE); char c = USART1->RDR; if ( terminalInputCallback ) terminalInputCallback(c); } } void EXTI2_IRQHandler(void) { if ( __HAL_GPIO_EXTI_GET_IT(GPIO_PIN_2) != RESET ) { __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_2); if ( ppsCallback ) ppsCallback(); } } void USART2_IRQHandler() { if ( __HAL_UART_GET_IT(&huart2, UART_IT_RXNE) ) { __HAL_UART_CLEAR_IT(&huart2, UART_IT_RXNE); char c = (char)USART2->RDR; if ( gnssInputCallback ) gnssInputCallback(c); } } void TIM2_IRQHandler(void) { if(__HAL_TIM_GET_FLAG(&htim2, TIM_FLAG_UPDATE) != RESET) { if(__HAL_TIM_GET_IT_SOURCE(&htim2, TIM_IT_UPDATE) !=RESET) { __HAL_TIM_CLEAR_IT(&htim2, TIM_IT_UPDATE); if ( sotdmaCallback ) sotdmaCallback(); } } } void EXTI3_IRQHandler(void) { if ( __HAL_GPIO_EXTI_GET_IT(GPIO_PIN_3) != RESET ) { __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_3); if ( rxClockCallback ) rxClockCallback(); } } void EXTI1_IRQHandler(void) { if ( __HAL_GPIO_EXTI_GET_IT(GPIO_PIN_1) != RESET ) { __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_1); if ( trxClockCallback ) trxClockCallback(); } } } #endif