mirror of
https://github.com/TencentARC/GFPGAN.git
synced 2025-05-15 14:50:11 -07:00
175 lines
7.0 KiB
Python
175 lines
7.0 KiB
Python
import argparse
|
|
import cv2
|
|
import glob
|
|
import numpy as np
|
|
import os
|
|
import torch
|
|
from basicsr.utils import imwrite
|
|
|
|
from gfpgan import GFPGANer
|
|
|
|
|
|
def main():
|
|
"""Inference demo for GFPGAN (for users).
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
'-i',
|
|
'--input',
|
|
type=str,
|
|
default='inputs/whole_imgs',
|
|
help='Input image or folder. Default: inputs/whole_imgs')
|
|
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder. Default: results')
|
|
# we use version to select models, which is more user-friendly
|
|
parser.add_argument(
|
|
'-v', '--version', type=str, default='1.3', help='GFPGAN model version. Option: 1 | 1.2 | 1.3. Default: 1.3')
|
|
parser.add_argument(
|
|
'-s', '--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2')
|
|
|
|
parser.add_argument(
|
|
'--bg_upsampler', type=str, default='realesrgan', help='background upsampler. Default: realesrgan')
|
|
parser.add_argument(
|
|
'--bg_tile',
|
|
type=int,
|
|
default=400,
|
|
help='Tile size for background sampler, 0 for no tile during testing. Default: 400')
|
|
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces')
|
|
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face')
|
|
parser.add_argument('--aligned', action='store_true', help='Input are aligned faces')
|
|
parser.add_argument(
|
|
'--ext',
|
|
type=str,
|
|
default='auto',
|
|
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto')
|
|
parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights.')
|
|
args = parser.parse_args()
|
|
|
|
args = parser.parse_args()
|
|
|
|
# ------------------------ input & output ------------------------
|
|
if args.input.endswith('/'):
|
|
args.input = args.input[:-1]
|
|
if os.path.isfile(args.input):
|
|
img_list = [args.input]
|
|
else:
|
|
img_list = sorted(glob.glob(os.path.join(args.input, '*')))
|
|
|
|
os.makedirs(args.output, exist_ok=True)
|
|
|
|
# ------------------------ set up background upsampler ------------------------
|
|
if args.bg_upsampler == 'realesrgan':
|
|
if not torch.cuda.is_available(): # CPU
|
|
import warnings
|
|
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
|
|
'If you really want to use it, please modify the corresponding codes.')
|
|
bg_upsampler = None
|
|
else:
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
from realesrgan import RealESRGANer
|
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
bg_upsampler = RealESRGANer(
|
|
scale=2,
|
|
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
|
|
model=model,
|
|
tile=args.bg_tile,
|
|
tile_pad=10,
|
|
pre_pad=0,
|
|
half=True) # need to set False in CPU mode
|
|
else:
|
|
bg_upsampler = None
|
|
|
|
# ------------------------ set up GFPGAN restorer ------------------------
|
|
if args.version == '1':
|
|
arch = 'original'
|
|
channel_multiplier = 1
|
|
model_name = 'GFPGANv1'
|
|
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth'
|
|
elif args.version == '1.2':
|
|
arch = 'clean'
|
|
channel_multiplier = 2
|
|
model_name = 'GFPGANCleanv1-NoCE-C2'
|
|
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth'
|
|
elif args.version == '1.3':
|
|
arch = 'clean'
|
|
channel_multiplier = 2
|
|
model_name = 'GFPGANv1.3'
|
|
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'
|
|
elif args.version == '1.4':
|
|
arch = 'clean'
|
|
channel_multiplier = 2
|
|
model_name = 'GFPGANv1.4'
|
|
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'
|
|
elif args.version == 'RestoreFormer':
|
|
arch = 'RestoreFormer'
|
|
channel_multiplier = 2
|
|
model_name = 'RestoreFormer'
|
|
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth'
|
|
else:
|
|
raise ValueError(f'Wrong model version {args.version}.')
|
|
|
|
# determine model paths
|
|
model_path = os.path.join('experiments/pretrained_models', model_name + '.pth')
|
|
if not os.path.isfile(model_path):
|
|
model_path = os.path.join('gfpgan/weights', model_name + '.pth')
|
|
if not os.path.isfile(model_path):
|
|
# download pre-trained models from url
|
|
model_path = url
|
|
|
|
restorer = GFPGANer(
|
|
model_path=model_path,
|
|
upscale=args.upscale,
|
|
arch=arch,
|
|
channel_multiplier=channel_multiplier,
|
|
bg_upsampler=bg_upsampler)
|
|
|
|
# ------------------------ restore ------------------------
|
|
for img_path in img_list:
|
|
# read image
|
|
img_name = os.path.basename(img_path)
|
|
print(f'Processing {img_name} ...')
|
|
basename, ext = os.path.splitext(img_name)
|
|
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
|
|
|
# restore faces and background if necessary
|
|
cropped_faces, restored_faces, restored_img = restorer.enhance(
|
|
input_img,
|
|
has_aligned=args.aligned,
|
|
only_center_face=args.only_center_face,
|
|
paste_back=True,
|
|
weight=args.weight)
|
|
|
|
# save faces
|
|
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)):
|
|
# save cropped face
|
|
save_crop_path = os.path.join(args.output, 'cropped_faces', f'{basename}_{idx:02d}.png')
|
|
imwrite(cropped_face, save_crop_path)
|
|
# save restored face
|
|
if args.suffix is not None:
|
|
save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png'
|
|
else:
|
|
save_face_name = f'{basename}_{idx:02d}.png'
|
|
save_restore_path = os.path.join(args.output, 'restored_faces', save_face_name)
|
|
imwrite(restored_face, save_restore_path)
|
|
# save comparison image
|
|
cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
|
|
imwrite(cmp_img, os.path.join(args.output, 'cmp', f'{basename}_{idx:02d}.png'))
|
|
|
|
# save restored img
|
|
if restored_img is not None:
|
|
if args.ext == 'auto':
|
|
extension = ext[1:]
|
|
else:
|
|
extension = args.ext
|
|
|
|
if args.suffix is not None:
|
|
save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}_{args.suffix}.{extension}')
|
|
else:
|
|
save_restore_path = os.path.join(args.output, 'restored_imgs', f'{basename}.{extension}')
|
|
imwrite(restored_img, save_restore_path)
|
|
|
|
print(f'Results are in the [{args.output}] folder.')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|