mirror of
https://github.com/TencentARC/GFPGAN.git
synced 2025-05-15 14:50:11 -07:00
162 lines
6.6 KiB
Python
162 lines
6.6 KiB
Python
# flake8: noqa
|
|
# This file is used for deploying replicate models
|
|
# running: cog predict -i img=@inputs/whole_imgs/10045.png -i version='v1.4' -i scale=2
|
|
# push: cog push r8.im/tencentarc/gfpgan
|
|
# push (backup): cog push r8.im/xinntao/gfpgan
|
|
|
|
import os
|
|
|
|
os.system('python setup.py develop')
|
|
os.system('pip install realesrgan')
|
|
|
|
import cv2
|
|
import shutil
|
|
import tempfile
|
|
import torch
|
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
|
|
|
from gfpgan import GFPGANer
|
|
|
|
try:
|
|
from cog import BasePredictor, Input, Path
|
|
from realesrgan.utils import RealESRGANer
|
|
except Exception:
|
|
print('please install cog and realesrgan package')
|
|
|
|
|
|
class Predictor(BasePredictor):
|
|
|
|
def setup(self):
|
|
os.makedirs('output', exist_ok=True)
|
|
# download weights
|
|
if not os.path.exists('gfpgan/weights/realesr-general-x4v3.pth'):
|
|
os.system(
|
|
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./gfpgan/weights'
|
|
)
|
|
if not os.path.exists('gfpgan/weights/GFPGANv1.2.pth'):
|
|
os.system(
|
|
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./gfpgan/weights')
|
|
if not os.path.exists('gfpgan/weights/GFPGANv1.3.pth'):
|
|
os.system(
|
|
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./gfpgan/weights')
|
|
if not os.path.exists('gfpgan/weights/GFPGANv1.4.pth'):
|
|
os.system(
|
|
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./gfpgan/weights')
|
|
if not os.path.exists('gfpgan/weights/RestoreFormer.pth'):
|
|
os.system(
|
|
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P ./gfpgan/weights'
|
|
)
|
|
|
|
# background enhancer with RealESRGAN
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
|
model_path = 'gfpgan/weights/realesr-general-x4v3.pth'
|
|
half = True if torch.cuda.is_available() else False
|
|
self.upsampler = RealESRGANer(
|
|
scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
|
|
|
# Use GFPGAN for face enhancement
|
|
self.face_enhancer = GFPGANer(
|
|
model_path='gfpgan/weights/GFPGANv1.4.pth',
|
|
upscale=2,
|
|
arch='clean',
|
|
channel_multiplier=2,
|
|
bg_upsampler=self.upsampler)
|
|
self.current_version = 'v1.4'
|
|
|
|
def predict(
|
|
self,
|
|
img: Path = Input(description='Input'),
|
|
version: str = Input(
|
|
description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.',
|
|
choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'],
|
|
default='v1.4'),
|
|
scale: float = Input(description='Rescaling factor', default=2),
|
|
) -> Path:
|
|
weight = 0.5
|
|
print(img, version, scale, weight)
|
|
try:
|
|
extension = os.path.splitext(os.path.basename(str(img)))[1]
|
|
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
|
|
if len(img.shape) == 3 and img.shape[2] == 4:
|
|
img_mode = 'RGBA'
|
|
elif len(img.shape) == 2:
|
|
img_mode = None
|
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
else:
|
|
img_mode = None
|
|
|
|
h, w = img.shape[0:2]
|
|
if h < 300:
|
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
if self.current_version != version:
|
|
if version == 'v1.2':
|
|
self.face_enhancer = GFPGANer(
|
|
model_path='gfpgan/weights/GFPGANv1.2.pth',
|
|
upscale=2,
|
|
arch='clean',
|
|
channel_multiplier=2,
|
|
bg_upsampler=self.upsampler)
|
|
self.current_version = 'v1.2'
|
|
elif version == 'v1.3':
|
|
self.face_enhancer = GFPGANer(
|
|
model_path='gfpgan/weights/GFPGANv1.3.pth',
|
|
upscale=2,
|
|
arch='clean',
|
|
channel_multiplier=2,
|
|
bg_upsampler=self.upsampler)
|
|
self.current_version = 'v1.3'
|
|
elif version == 'v1.4':
|
|
self.face_enhancer = GFPGANer(
|
|
model_path='gfpgan/weights/GFPGANv1.4.pth',
|
|
upscale=2,
|
|
arch='clean',
|
|
channel_multiplier=2,
|
|
bg_upsampler=self.upsampler)
|
|
self.current_version = 'v1.4'
|
|
elif version == 'RestoreFormer':
|
|
self.face_enhancer = GFPGANer(
|
|
model_path='gfpgan/weights/RestoreFormer.pth',
|
|
upscale=2,
|
|
arch='RestoreFormer',
|
|
channel_multiplier=2,
|
|
bg_upsampler=self.upsampler)
|
|
|
|
try:
|
|
_, _, output = self.face_enhancer.enhance(
|
|
img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
|
except RuntimeError as error:
|
|
print('Error', error)
|
|
|
|
try:
|
|
if scale != 2:
|
|
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
|
h, w = img.shape[0:2]
|
|
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
|
except Exception as error:
|
|
print('wrong scale input.', error)
|
|
|
|
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
|
extension = 'png'
|
|
# save_path = f'output/out.{extension}'
|
|
# cv2.imwrite(save_path, output)
|
|
out_path = Path(tempfile.mkdtemp()) / f'out.{extension}'
|
|
cv2.imwrite(str(out_path), output)
|
|
except Exception as error:
|
|
print('global exception: ', error)
|
|
finally:
|
|
clean_folder('output')
|
|
return out_path
|
|
|
|
|
|
def clean_folder(folder):
|
|
for filename in os.listdir(folder):
|
|
file_path = os.path.join(folder, filename)
|
|
try:
|
|
if os.path.isfile(file_path) or os.path.islink(file_path):
|
|
os.unlink(file_path)
|
|
elif os.path.isdir(file_path):
|
|
shutil.rmtree(file_path)
|
|
except Exception as e:
|
|
print(f'Failed to delete {file_path}. Reason: {e}')
|