# GFPGAN (CVPR 2021) [**Paper**](https://arxiv.org/abs/2101.04061) **|** [**Project Page**](https://xinntao.github.io/projects/gfpgan)    [English](README.md) **|** [简体中文](README_CN.md) GFPGAN is a blind face restoration algorithm towards real-world face images. ### :book: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior > [[Paper](https://arxiv.org/abs/2101.04061)]   [[Project Page](https://xinntao.github.io/projects/gfpgan)]   [[Demo]()]
> [Xintao Wang](https://xinntao.github.io/), [Yu Li](https://yu-li.github.io/), [Honglun Zhang](https://scholar.google.com/citations?hl=en&user=KjQLROoAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en)
> Applied Research Center (ARC), Tencent PCG #### Abstract Blind face restoration usually relies on facial priors, such as facial geometry prior or reference prior, to restore realistic and faithful details. However, very low-quality inputs cannot offer accurate geometric prior while high-quality references are inaccessible, limiting the applicability in real-world scenarios. In this work, we propose GFP-GAN that leverages rich and diverse priors encapsulated in a pretrained face GAN for blind face restoration. This Generative Facial Prior (GFP) is incorporated into the face restoration process via novel channel-split spatial feature transform layers, which allow our method to achieve a good balance of realness and fidelity. Thanks to the powerful generative facial prior and delicate designs, our GFP-GAN could jointly restore facial details and enhance colors with just a single forward pass, while GAN inversion methods require expensive image-specific optimization at inference. Extensive experiments show that our method achieves superior performance to prior art on both synthetic and real-world datasets. #### BibTeX @InProceedings{wang2021gfpgan, author = {Xintao Wang and Yu Li and Honglun Zhang and Ying Shan}, title = {Towards Real-World Blind Face Restoration with Generative Facial Prior}, booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2021} }

--- ## :wrench: Dependencies and Installation - Python >= 3.7 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html)) - [PyTorch >= 1.7](https://pytorch.org/) - NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads) ### Installation 1. Clone repo ```bash git clone https://github.com/xinntao/GFPGAN.git ``` 1. Install dependent packages ```bash cd GFPGAN pip install -r requirements.txt ``` ## :zap: Quick Inference > python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs ## :scroll: License and Acknowledgement GFPGAN is realeased under Apache License Version 2.0. ## :e-mail: Contact If you have any question, please email `xintao.wang@outlook.com` or `xintaowang@tencent.com`.