""" Modified from https://github.com/sczhou/CodeFormer VQGAN code, adapted from the original created by the Unleashing Transformers authors: https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py """ import math import torch import torch.nn as nn import torch.nn.functional as F from basicsr.utils import get_root_logger from basicsr.utils.registry import ARCH_REGISTRY from torch import Tensor from typing import Optional class VectorQuantizer(nn.Module): def __init__(self, codebook_size, emb_dim, beta): super(VectorQuantizer, self).__init__() self.codebook_size = codebook_size # number of embeddings self.emb_dim = emb_dim # dimension of embedding self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 self.embedding = nn.Embedding(self.codebook_size, self.emb_dim) self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size) def forward(self, z): # reshape z -> (batch, height, width, channel) and flatten z = z.permute(0, 2, 3, 1).contiguous() z_flattened = z.view(-1, self.emb_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \ 2 * torch.matmul(z_flattened, self.embedding.weight.t()) mean_distance = torch.mean(d) # find closest encodings # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False) # [0-1], higher score, higher confidence min_encoding_scores = torch.exp(-min_encoding_scores / 10) min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z) min_encodings.scatter_(1, min_encoding_indices, 1) # get quantized latent vectors z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) # compute loss for embedding loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2) # preserve gradients z_q = z + (z_q - z).detach() # perplexity e_mean = torch.mean(min_encodings, dim=0) perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q, loss, { 'perplexity': perplexity, 'min_encodings': min_encodings, 'min_encoding_indices': min_encoding_indices, 'min_encoding_scores': min_encoding_scores, 'mean_distance': mean_distance } def get_codebook_feat(self, indices, shape): # input indices: batch*token_num -> (batch*token_num)*1 # shape: batch, height, width, channel indices = indices.view(-1, 1) min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices) min_encodings.scatter_(1, indices, 1) # get quantized latent vectors z_q = torch.matmul(min_encodings.float(), self.embedding.weight) if shape is not None: # reshape back to match original input shape z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous() return z_q class GumbelQuantizer(nn.Module): def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0): super().__init__() self.codebook_size = codebook_size # number of embeddings self.emb_dim = emb_dim # dimension of embedding self.straight_through = straight_through self.temperature = temp_init self.kl_weight = kl_weight self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits self.embed = nn.Embedding(codebook_size, emb_dim) def forward(self, z): hard = self.straight_through if self.training else True logits = self.proj(z) soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard) z_q = torch.einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight) # + kl divergence to the prior loss qy = F.softmax(logits, dim=1) diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean() min_encoding_indices = soft_one_hot.argmax(dim=1) return z_q, diff, {'min_encoding_indices': min_encoding_indices} class Downsample(nn.Module): def __init__(self, in_channels): super().__init__() self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode='constant', value=0) x = self.conv(x) return x class Upsample(nn.Module): def __init__(self, in_channels): super().__init__() self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = F.interpolate(x, scale_factor=2.0, mode='nearest') x = self.conv(x) return x class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) k = k.reshape(b, c, h * w) w_ = torch.bmm(q, k) w_ = w_ * (int(c)**(-0.5)) w_ = F.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) h_ = torch.bmm(v, w_) h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) return x + h_ class Encoder(nn.Module): def __init__(self, in_channels, nf, out_channels, ch_mult, num_res_blocks, resolution, attn_resolutions): super().__init__() self.nf = nf self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.attn_resolutions = attn_resolutions curr_res = self.resolution in_ch_mult = (1, ) + tuple(ch_mult) blocks = [] # initial convultion blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1)) # residual and downsampling blocks, with attention on smaller res (16x16) for i in range(self.num_resolutions): block_in_ch = nf * in_ch_mult[i] block_out_ch = nf * ch_mult[i] for _ in range(self.num_res_blocks): blocks.append(ResBlock(block_in_ch, block_out_ch)) block_in_ch = block_out_ch if curr_res in attn_resolutions: blocks.append(AttnBlock(block_in_ch)) if i != self.num_resolutions - 1: blocks.append(Downsample(block_in_ch)) curr_res = curr_res // 2 # non-local attention block blocks.append(ResBlock(block_in_ch, block_in_ch)) blocks.append(AttnBlock(block_in_ch)) blocks.append(ResBlock(block_in_ch, block_in_ch)) # normalise and convert to latent size blocks.append(normalize(block_in_ch)) blocks.append(nn.Conv2d(block_in_ch, out_channels, kernel_size=3, stride=1, padding=1)) self.blocks = nn.ModuleList(blocks) def forward(self, x): for block in self.blocks: x = block(x) return x class Generator(nn.Module): def __init__(self, nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim): super().__init__() self.nf = nf self.ch_mult = ch_mult self.num_resolutions = len(self.ch_mult) self.num_res_blocks = res_blocks self.resolution = img_size self.attn_resolutions = attn_resolutions self.in_channels = emb_dim self.out_channels = 3 block_in_ch = self.nf * self.ch_mult[-1] curr_res = self.resolution // 2**(self.num_resolutions - 1) blocks = [] # initial conv blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1)) # non-local attention block blocks.append(ResBlock(block_in_ch, block_in_ch)) blocks.append(AttnBlock(block_in_ch)) blocks.append(ResBlock(block_in_ch, block_in_ch)) for i in reversed(range(self.num_resolutions)): block_out_ch = self.nf * self.ch_mult[i] for _ in range(self.num_res_blocks): blocks.append(ResBlock(block_in_ch, block_out_ch)) block_in_ch = block_out_ch if curr_res in self.attn_resolutions: blocks.append(AttnBlock(block_in_ch)) if i != 0: blocks.append(Upsample(block_in_ch)) curr_res = curr_res * 2 blocks.append(normalize(block_in_ch)) blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1)) self.blocks = nn.ModuleList(blocks) def forward(self, x): for block in self.blocks: x = block(x) return x class VQAutoEncoder(nn.Module): def __init__(self, img_size, nf, ch_mult, quantizer='nearest', res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256, beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): super().__init__() logger = get_root_logger() self.in_channels = 3 self.nf = nf self.n_blocks = res_blocks self.codebook_size = codebook_size self.embed_dim = emb_dim self.ch_mult = ch_mult self.resolution = img_size self.attn_resolutions = attn_resolutions self.quantizer_type = quantizer self.encoder = Encoder(self.in_channels, self.nf, self.embed_dim, self.ch_mult, self.n_blocks, self.resolution, self.attn_resolutions) if self.quantizer_type == 'nearest': self.beta = beta # 0.25 self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta) elif self.quantizer_type == 'gumbel': self.gumbel_num_hiddens = emb_dim self.straight_through = gumbel_straight_through self.kl_weight = gumbel_kl_weight self.quantize = GumbelQuantizer(self.codebook_size, self.embed_dim, self.gumbel_num_hiddens, self.straight_through, self.kl_weight) self.generator = Generator(nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim) if model_path is not None: chkpt = torch.load(model_path, map_location='cpu') if 'params_ema' in chkpt: self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema']) logger.info(f'vqgan is loaded from: {model_path} [params_ema]') elif 'params' in chkpt: self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) logger.info(f'vqgan is loaded from: {model_path} [params]') else: raise ValueError('Wrong params!') def forward(self, x): x = self.encoder(x) quant, codebook_loss, quant_stats = self.quantize(x) x = self.generator(quant) return x, codebook_loss, quant_stats def calc_mean_std(feat, eps=1e-5): """Calculate mean and std for adaptive_instance_normalization. Args: feat (Tensor): 4D tensor. eps (float): A small value added to the variance to avoid divide-by-zero. Default: 1e-5. """ size = feat.size() assert len(size) == 4, 'The input feature should be 4D tensor.' b, c = size[:2] feat_var = feat.view(b, c, -1).var(dim=2) + eps feat_std = feat_var.sqrt().view(b, c, 1, 1) feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) return feat_mean, feat_std def adaptive_instance_normalization(content_feat, style_feat): """Adaptive instance normalization. Adjust the reference features to have the similar color and illuminations as those in the degradate features. Args: content_feat (Tensor): The reference feature. style_feat (Tensor): The degradate features. """ size = content_feat.size() style_mean, style_std = calc_mean_std(style_feat) content_mean, content_std = calc_mean_std(content_feat) normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) return normalized_feat * style_std.expand(size) + style_mean.expand(size) class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError('normalize should be True if scale is passed') if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, x, mask=None): if mask is None: mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos def _get_activation_fn(activation): """Return an activation function given a string""" if activation == 'relu': return F.relu if activation == 'gelu': return F.gelu if activation == 'glu': return F.glu raise RuntimeError(F'activation should be relu/gelu, not {activation}.') class TransformerSALayer(nn.Module): def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation='gelu'): super().__init__() self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) # Implementation of Feedforward model - MLP self.linear1 = nn.Linear(embed_dim, dim_mlp) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_mlp, embed_dim) self.norm1 = nn.LayerNorm(embed_dim) self.norm2 = nn.LayerNorm(embed_dim) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward(self, tgt, tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): # self attention tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) # ffn tgt2 = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout2(tgt2) return tgt def normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) @torch.jit.script def swish(x): return x * torch.sigmoid(x) class ResBlock(nn.Module): def __init__(self, in_channels, out_channels=None): super(ResBlock, self).__init__() self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.norm1 = normalize(in_channels) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.norm2 = normalize(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x_in): x = x_in x = self.norm1(x) x = swish(x) x = self.conv1(x) x = self.norm2(x) x = swish(x) x = self.conv2(x) if self.in_channels != self.out_channels: x_in = self.conv_out(x_in) return x + x_in class Fuse_sft_block(nn.Module): def __init__(self, in_ch, out_ch): super().__init__() self.encode_enc = ResBlock(2 * in_ch, out_ch) self.scale = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) self.shift = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) def forward(self, enc_feat, dec_feat, w=1): enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) scale = self.scale(enc_feat) shift = self.shift(enc_feat) residual = w * (dec_feat * scale + shift) out = dec_feat + residual return out @ARCH_REGISTRY.register() class CodeFormer(VQAutoEncoder): def __init__(self, dim_embd=512, n_head=8, n_layers=9, codebook_size=1024, latent_size=256, connect_list=['32', '64', '128', '256'], fix_modules=['quantize', 'generator']): super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest', 2, [16], codebook_size) if fix_modules is not None: for module in fix_modules: for param in getattr(self, module).parameters(): param.requires_grad = False self.connect_list = connect_list self.n_layers = n_layers self.dim_embd = dim_embd self.dim_mlp = dim_embd * 2 self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) self.feat_emb = nn.Linear(256, self.dim_embd) # transformer self.ft_layers = nn.Sequential(*[ TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) for _ in range(self.n_layers) ]) # logits_predict head self.idx_pred_layer = nn.Sequential(nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)) self.channels = {'16': 512, '32': 256, '64': 256, '128': 128, '256': 128, '512': 64} # after second residual block for > 16, before attn layer for ==16 self.fuse_encoder_block = {'512': 2, '256': 5, '128': 8, '64': 11, '32': 14, '16': 18} # after first residual block for > 16, before attn layer for ==16 self.fuse_generator_block = {'16': 6, '32': 9, '64': 12, '128': 15, '256': 18, '512': 21} # fuse_convs_dict self.fuse_convs_dict = nn.ModuleDict() for f_size in self.connect_list: in_ch = self.channels[f_size] self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, x, weight=0.5, **kwargs): detach_16 = True code_only = False adain = True # ################### Encoder ##################### enc_feat_dict = {} out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.encoder.blocks): x = block(x) if i in out_list: enc_feat_dict[str(x.shape[-1])] = x.clone() lq_feat = x # ################# Transformer ################### # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1) # BCHW -> BC(HW) -> (HW)BC feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1)) query_emb = feat_emb # Transformer encoder for layer in self.ft_layers: query_emb = layer(query_emb, query_pos=pos_emb) # output logits logits = self.idx_pred_layer(query_emb) # (hw)bn logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n if code_only: # for training stage II # logits doesn't need softmax before cross_entropy loss return logits, lq_feat # ################# Quantization ################### # if self.training: # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) # # b(hw)c -> bc(hw) -> bchw # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) # ------------ soft_one_hot = F.softmax(logits, dim=2) _, top_idx = torch.topk(soft_one_hot, 1, dim=2) quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0], 16, 16, 256]) # preserve gradients # quant_feat = lq_feat + (quant_feat - lq_feat).detach() if detach_16: quant_feat = quant_feat.detach() # for training stage III if adain: quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) # ################## Generator #################### x = quant_feat fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.generator.blocks): x = block(x) if i in fuse_list: # fuse after i-th block f_size = str(x.shape[-1]) if weight > 0: x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, weight) out = x # logits doesn't need softmax before cross_entropy loss # return out, logits, lq_feat return out, logits