# flake8: noqa # This file is used for deploying replicate models import os os.system('python setup.py develop') os.system('pip install realesrgan') import cv2 import shutil import tempfile import torch from basicsr.archs.srvgg_arch import SRVGGNetCompact from gfpgan import GFPGANer try: from cog import BasePredictor, Input, Path from realesrgan.utils import RealESRGANer except Exception: print('please install cog and realesrgan package') class Predictor(BasePredictor): def setup(self): # download weights if not os.path.exists('realesr-general-x4v3.pth'): os.system( 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .') if not os.path.exists('GFPGANv1.2.pth'): os.system('wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .') if not os.path.exists('GFPGANv1.3.pth'): os.system('wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .') # background enhancer with RealESRGAN model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = 'realesr-general-x4v3.pth' half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) # Use GFPGAN for face enhancement self.face_enhancer_v3 = GFPGANer( model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) self.face_enhancer_v2 = GFPGANer( model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) os.makedirs('output', exist_ok=True) def predict( self, img: Path = Input(description='Input'), version: str = Input(description='GFPGAN version', choices=['v1.2', 'v1.3'], default='v1.3'), scale: float = Input(description='Rescaling factor', default=2) ) -> Path: try: img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED) if len(img.shape) == 3 and img.shape[2] == 4: img_mode = 'RGBA' else: img_mode = None h, w = img.shape[0:2] if h < 300: img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) if version == 'v1.2': face_enhancer = self.face_enhancer_v2 else: face_enhancer = self.face_enhancer_v3 try: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) except RuntimeError as error: print('Error', error) else: extension = 'png' try: if scale != 2: interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 h, w = img.shape[0:2] output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) except Exception as error: print('wrong scale input.', error) if img_mode == 'RGBA': # RGBA images should be saved in png format extension = 'png' else: extension = 'jpg' save_path = f'output/out.{extension}' cv2.imwrite(save_path, output) out_path = os.path.join(tempfile.mkdtemp(), 'output.png') cv2.imwrite(str(out_path), output) except Exception as error: print('global exception', error) finally: clean_folder('output') return out_path def clean_folder(folder): for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print(f'Failed to delete {file_path}. Reason: {e}')