mirror of
https://github.com/TencentARC/GFPGAN.git
synced 2025-05-15 14:50:11 -07:00
update README
This commit is contained in:
parent
d507febad8
commit
b529c9789d
@ -5,7 +5,7 @@
|
||||
[](https://github.com/TencentARC/GFPGAN/blob/master/LICENSE)
|
||||
[](https://github.com/TencentARC/GFPGAN/blob/master/.github/workflows/pylint.yml)
|
||||
|
||||
1. [Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) for GFPGAN <a href="https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
|
||||
1. [Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) for GFPGAN <a href="https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>; (Another [Colab Demo](https://colab.research.google.com/drive/1Oa1WwKB4M4l1GmR7CtswDVgOCOeSLChA?usp=sharing) for the original paper model)
|
||||
1. We provide a *clean* version of GFPGAN, which can run without CUDA extensions. So that it can run in **Windows** or on **CPU mode**.
|
||||
|
||||
GFPGAN aims at developing **Practical Algorithm for Real-world Face Restoration**.<br>
|
||||
@ -13,7 +13,7 @@ It leverages rich and diverse priors encapsulated in a pretrained face GAN (*e.g
|
||||
|
||||
:triangular_flag_on_post: **Updates**
|
||||
|
||||
- :white_check_mark: We provide a *clean* version of GFPGAN, which does not require CUDA extensionts.
|
||||
- :white_check_mark: We provide a *clean* version of GFPGAN, which does not require CUDA extensions.
|
||||
- :white_check_mark: We provide an updated model without colorizing faces.
|
||||
|
||||
### :book: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior
|
||||
@ -77,8 +77,8 @@ python inference_gfpgan_full.py --upscale_factor 2 --test_path inputs/whole_imgs
|
||||
|
||||
## :european_castle: Model Zoo
|
||||
|
||||
- [GFPGANCleanv1-NoCE-C2.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth)
|
||||
- [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth)
|
||||
- [GFPGANCleanv1-NoCE-C2.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth): No colorization; no CUDA extensions are required. It is still in training. Trained with more data with pre-processing.
|
||||
- [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth): The paper Model, with colorization.
|
||||
|
||||
## :computer: Training
|
||||
|
||||
|
BIN
inputs/whole_imgs/Blake_Lively.jpg
Normal file
BIN
inputs/whole_imgs/Blake_Lively.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 91 KiB |
Loading…
x
Reference in New Issue
Block a user