mirror of
https://github.com/TencentARC/GFPGAN.git
synced 2025-05-15 23:00:12 -07:00
update replicate (#248)
* update util * update predict * update predict * update predict * update predict * update predict * update predict * update predict * update predict * merge replicate update
This commit is contained in:
parent
3e27784b1b
commit
7272e45887
@ -80,7 +80,8 @@ class GFPGANer():
|
||||
det_model='retinaface_resnet50',
|
||||
save_ext='png',
|
||||
use_parse=True,
|
||||
device=self.device)
|
||||
device=self.device,
|
||||
model_rootpath='gfpgan/weights')
|
||||
|
||||
if model_path.startswith('https://'):
|
||||
model_path = load_file_from_url(
|
||||
|
79
predict.py
79
predict.py
@ -1,5 +1,9 @@
|
||||
# flake8: noqa
|
||||
# This file is used for deploying replicate models
|
||||
# running: cog predict -i img=@inputs/whole_imgs/10045.png -i version='v1.4' -i scale=2
|
||||
# push: cog push r8.im/tencentarc/gfpgan
|
||||
# push (backup): cog push r8.im/xinntao/gfpgan
|
||||
|
||||
import os
|
||||
|
||||
os.system('python setup.py develop')
|
||||
@ -10,6 +14,7 @@ import shutil
|
||||
import tempfile
|
||||
import torch
|
||||
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
||||
from pathlib import Path
|
||||
|
||||
from gfpgan import GFPGANer
|
||||
|
||||
@ -24,33 +29,46 @@ class Predictor(BasePredictor):
|
||||
|
||||
def setup(self):
|
||||
# download weights
|
||||
if not os.path.exists('realesr-general-x4v3.pth'):
|
||||
if not os.path.exists('gfpgan/weights/realesr-general-x4v3.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .')
|
||||
if not os.path.exists('GFPGANv1.2.pth'):
|
||||
os.system('wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .')
|
||||
if not os.path.exists('GFPGANv1.3.pth'):
|
||||
os.system('wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .')
|
||||
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./gfpgan/weights'
|
||||
)
|
||||
if not os.path.exists('gfpgan/weights/GFPGANv1.2.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./gfpgan/weights')
|
||||
if not os.path.exists('gfpgan/weights/GFPGANv1.3.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./gfpgan/weights')
|
||||
if not os.path.exists('gfpgan/weights/GFPGANv1.4.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./gfpgan/weights')
|
||||
|
||||
# background enhancer with RealESRGAN
|
||||
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
||||
model_path = 'realesr-general-x4v3.pth'
|
||||
model_path = 'gfpgan/weights/realesr-general-x4v3.pth'
|
||||
half = True if torch.cuda.is_available() else False
|
||||
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
||||
self.upsampler = RealESRGANer(
|
||||
scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
||||
|
||||
# Use GFPGAN for face enhancement
|
||||
self.face_enhancer_v3 = GFPGANer(
|
||||
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
||||
self.face_enhancer_v2 = GFPGANer(
|
||||
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
||||
os.makedirs('output', exist_ok=True)
|
||||
self.face_enhancer = GFPGANer(
|
||||
model_path='gfpgan/weights/GFPGANv1.4.pth',
|
||||
upscale=2,
|
||||
arch='clean',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
self.current_version = 'v1.4'
|
||||
|
||||
def predict(
|
||||
self,
|
||||
img: Path = Input(description='Input'),
|
||||
version: str = Input(description='GFPGAN version', choices=['v1.2', 'v1.3'], default='v1.3'),
|
||||
version: str = Input(
|
||||
description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.',
|
||||
choices=['v1.2', 'v1.3', 'v1.4'],
|
||||
default='v1.4'),
|
||||
scale: float = Input(description='Rescaling factor', default=2)
|
||||
) -> Path:
|
||||
print(img, version, scale)
|
||||
try:
|
||||
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
|
||||
if len(img.shape) == 3 and img.shape[2] == 4:
|
||||
@ -62,12 +80,35 @@ class Predictor(BasePredictor):
|
||||
if h < 300:
|
||||
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
||||
|
||||
if self.current_version != version:
|
||||
if version == 'v1.2':
|
||||
face_enhancer = self.face_enhancer_v2
|
||||
else:
|
||||
face_enhancer = self.face_enhancer_v3
|
||||
self.face_enhancer = GFPGANer(
|
||||
model_path='gfpgan/weights/GFPGANv1.2.pth',
|
||||
upscale=2,
|
||||
arch='clean',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
self.current_version = 'v1.2'
|
||||
elif version == 'v1.3':
|
||||
self.face_enhancer = GFPGANer(
|
||||
model_path='gfpgan/weights/GFPGANv1.3.pth',
|
||||
upscale=2,
|
||||
arch='clean',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
self.current_version = 'v1.3'
|
||||
elif version == 'v1.4':
|
||||
self.face_enhancer = GFPGANer(
|
||||
model_path='gfpgan/weights/GFPGANv1.4.pth',
|
||||
upscale=2,
|
||||
arch='clean',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
self.current_version = 'v1.4'
|
||||
|
||||
try:
|
||||
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
||||
_, _, output = self.face_enhancer.enhance(
|
||||
img, has_aligned=False, only_center_face=False, paste_back=True)
|
||||
except RuntimeError as error:
|
||||
print('Error', error)
|
||||
else:
|
||||
@ -86,7 +127,7 @@ class Predictor(BasePredictor):
|
||||
extension = 'jpg'
|
||||
save_path = f'output/out.{extension}'
|
||||
cv2.imwrite(save_path, output)
|
||||
out_path = os.path.join(tempfile.mkdtemp(), 'output.png')
|
||||
out_path = Path(tempfile.mkdtemp()) / 'output.png'
|
||||
cv2.imwrite(str(out_path), output)
|
||||
except Exception as error:
|
||||
print('global exception', error)
|
||||
|
Loading…
x
Reference in New Issue
Block a user