diff --git a/scripts/parse_landmark.py b/scripts/parse_landmark.py new file mode 100644 index 0000000..7ca457e --- /dev/null +++ b/scripts/parse_landmark.py @@ -0,0 +1,78 @@ +import cv2 +import json +import numpy as np +import torch +from collections import OrderedDict + +from basicsr.utils import FileClient, imfrombytes + +print('Load JSON metadata...') +# use the json file in FFHQ dataset +with open('ffhq-dataset-v2.json', 'rb') as f: + json_data = json.load(f, object_pairs_hook=OrderedDict) + +print('Open LMDB file...') +# read ffhq images +file_client = FileClient('lmdb', db_paths='datasets/ffhq/ffhq_512.lmdb') +with open('datasets/ffhq/ffhq_512.lmdb/meta_info.txt') as fin: + paths = [line.split('.')[0] for line in fin] + +save_img = False +scale = 0.5 # 0.5 for official FFHQ (512x512), 1 for others +enlarge_ratio = 1.4 # only for eyes +save_dict = {} + +for item_idx, item in enumerate(json_data.values()): + print(f'\r{item_idx} / {len(json_data)}, {item["image"]["file_path"]} ', end='', flush=True) + + # parse landmarks + lm = np.array(item['image']['face_landmarks']) + lm = lm * scale + + item_dict = {} + # get image + if save_img: + img_bytes = file_client.get(paths[item_idx]) + img = imfrombytes(img_bytes, float32=True) + + map_left_eye = list(range(36, 42)) + map_right_eye = list(range(42, 48)) + map_mouth = list(range(48, 68)) + + # eye_left + mean_left_eye = np.mean(lm[map_left_eye], 0) # (x, y) + half_len_left_eye = np.max((np.max(np.max(lm[map_left_eye], 0) - np.min(lm[map_left_eye], 0)) / 2, 16)) + item_dict['left_eye'] = [mean_left_eye[0], mean_left_eye[1], half_len_left_eye] + # mean_left_eye[0] = 512 - mean_left_eye[0] # for testing flip + half_len_left_eye *= enlarge_ratio + loc_left_eye = np.hstack((mean_left_eye - half_len_left_eye + 1, mean_left_eye + half_len_left_eye)).astype(int) + if save_img: + eye_left_img = img[loc_left_eye[1]:loc_left_eye[3], loc_left_eye[0]:loc_left_eye[2], :] + cv2.imwrite(f'tmp/{item_idx:08d}_eye_left.png', eye_left_img * 255) + + # eye_right + mean_right_eye = np.mean(lm[map_right_eye], 0) + half_len_right_eye = np.max((np.max(np.max(lm[map_right_eye], 0) - np.min(lm[map_right_eye], 0)) / 2, 16)) + item_dict['right_eye'] = [mean_right_eye[0], mean_right_eye[1], half_len_right_eye] + # mean_right_eye[0] = 512 - mean_right_eye[0] # # for testing flip + half_len_right_eye *= enlarge_ratio + loc_right_eye = np.hstack( + (mean_right_eye - half_len_right_eye + 1, mean_right_eye + half_len_right_eye)).astype(int) + if save_img: + eye_right_img = img[loc_right_eye[1]:loc_right_eye[3], loc_right_eye[0]:loc_right_eye[2], :] + cv2.imwrite(f'tmp/{item_idx:08d}_eye_right.png', eye_right_img * 255) + + # mouth + mean_mouth = np.mean(lm[map_mouth], 0) + half_len_mouth = np.max((np.max(np.max(lm[map_mouth], 0) - np.min(lm[map_mouth], 0)) / 2, 16)) + item_dict['mouth'] = [mean_mouth[0], mean_mouth[1], half_len_mouth] + # mean_mouth[0] = 512 - mean_mouth[0] # for testing flip + loc_mouth = np.hstack((mean_mouth - half_len_mouth + 1, mean_mouth + half_len_mouth)).astype(int) + if save_img: + mouth_img = img[loc_mouth[1]:loc_mouth[3], loc_mouth[0]:loc_mouth[2], :] + cv2.imwrite(f'tmp/{item_idx:08d}_mouth.png', mouth_img * 255) + + save_dict[f'{item_idx:08d}'] = item_dict + +print('Save...') +torch.save(save_dict, './FFHQ_eye_mouth_landmarks_512.pth')