From 090e4d610e92056788a368ea62f4ffd56360a045 Mon Sep 17 00:00:00 2001 From: Xintao Date: Thu, 20 May 2021 11:08:58 +0800 Subject: [PATCH] update readme --- README.md | 58 +++++++++++++++++++++++++++++++++++++++++++++++++++- README_CN.md | 58 +++++++++++++++++++++++++++++++++++++++++++++++++++- 2 files changed, 114 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 106379c..525ba97 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,59 @@ -# GFPGAN +# GFPGAN (CVPR 2021) [English](README.md) **|** [简体中文](README_CN.md) + +[[Paper]](https://arxiv.org/abs/2101.04061) **|** [[Project Page]](https://xinntao.github.io/projects/gfpgan) + +GFPGAN is a blind face restoration algorithm towards real-world face images. + +> **GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior** +> [Xintao Wang](https://xinntao.github.io/), [Yu Li](https://yu-li.github.io/), [Honglun Zhang](https://scholar.google.com/citations?hl=en&user=KjQLROoAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en) +> Applied Research Center (ARC), Tencent PCG + +#### BibTeX + + @InProceedings{wang2021gfpgan, + author = {Xintao Wang and Yu Li and Honglun Zhang and Ying Shan}, + title = {Towards Real-World Blind Face Restoration with Generative Facial Prior}, + booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, + year = {2021} + } + +

+ +

+ +--- + +## :wrench: Dependencies and Installation + +- Python >= 3.7 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html)) +- [PyTorch >= 1.7](https://pytorch.org/) +- NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads) + +### Installation + +1. Clone repo + + ```bash + git clone https://github.com/xinntao/GFPGAN.git + ``` + +1. Install dependent packages + + ```bash + cd GFPGAN + pip install -r requirements.txt + ``` + +## :zap: Quick Inference + +> python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs + +## :scroll: License and Acknowledgement + +TODO + +## :e-mail: Contact + +If you have any question, please email `xintao.wang@outlook.com` or `xintaowang@tencent.com`. diff --git a/README_CN.md b/README_CN.md index 106379c..525ba97 100644 --- a/README_CN.md +++ b/README_CN.md @@ -1,3 +1,59 @@ -# GFPGAN +# GFPGAN (CVPR 2021) [English](README.md) **|** [简体中文](README_CN.md) + +[[Paper]](https://arxiv.org/abs/2101.04061) **|** [[Project Page]](https://xinntao.github.io/projects/gfpgan) + +GFPGAN is a blind face restoration algorithm towards real-world face images. + +> **GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior** +> [Xintao Wang](https://xinntao.github.io/), [Yu Li](https://yu-li.github.io/), [Honglun Zhang](https://scholar.google.com/citations?hl=en&user=KjQLROoAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en) +> Applied Research Center (ARC), Tencent PCG + +#### BibTeX + + @InProceedings{wang2021gfpgan, + author = {Xintao Wang and Yu Li and Honglun Zhang and Ying Shan}, + title = {Towards Real-World Blind Face Restoration with Generative Facial Prior}, + booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, + year = {2021} + } + +

+ +

+ +--- + +## :wrench: Dependencies and Installation + +- Python >= 3.7 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html)) +- [PyTorch >= 1.7](https://pytorch.org/) +- NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads) + +### Installation + +1. Clone repo + + ```bash + git clone https://github.com/xinntao/GFPGAN.git + ``` + +1. Install dependent packages + + ```bash + cd GFPGAN + pip install -r requirements.txt + ``` + +## :zap: Quick Inference + +> python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs + +## :scroll: License and Acknowledgement + +TODO + +## :e-mail: Contact + +If you have any question, please email `xintao.wang@outlook.com` or `xintaowang@tencent.com`.