1
0
mirror of https://github.com/TencentARC/GFPGAN.git synced 2025-05-20 01:00:21 -07:00

add inference

This commit is contained in:
Xintao 2021-05-17 23:32:41 +08:00
parent 6ddfed7bde
commit 043dc22027
7 changed files with 1242 additions and 0 deletions

29
.github/workflows/pylint.yml vendored Normal file
View File

@ -0,0 +1,29 @@
name: Python Lint
on: [push, pull_request]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.8]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install flake8 yapf isort
- name: Lint
run: |
flake8 .
isort --check-only --diff basicsr/ options/ scripts/ tests/ inference/ setup.py
yapf -r -d basicsr/ options/ scripts/ tests/ inference/ setup.py

120
.gitignore vendored Normal file
View File

@ -0,0 +1,120 @@
.vscode
# ignored files
version.py
# ignored files with suffix
*.html
*.png
*.jpeg
*.jpg
*.gif
*.pth
*.zip
# template
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/

40
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,40 @@
repos:
# flake8
- repo: https://github.com/PyCQA/flake8
rev: 3.8.3
hooks:
- id: flake8
args: ["--config=setup.cfg", "--ignore=W504, W503"]
# modify known_third_party
- repo: https://github.com/asottile/seed-isort-config
rev: v2.2.0
hooks:
- id: seed-isort-config
# isort
- repo: https://github.com/timothycrosley/isort
rev: 5.2.2
hooks:
- id: isort
# yapf
- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.30.0
hooks:
- id: yapf
# pre-commit-hooks
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.2.0
hooks:
- id: trailing-whitespace # Trim trailing whitespace
- id: check-yaml # Attempt to load all yaml files to verify syntax
- id: check-merge-conflict # Check for files that contain merge conflict strings
- id: double-quote-string-fixer # Replace double quoted strings with single quoted strings
- id: end-of-file-fixer # Make sure files end in a newline and only a newline
- id: requirements-txt-fixer # Sort entries in requirements.txt and remove incorrect entry for pkg-resources==0.0.0
- id: fix-encoding-pragma # Remove the coding pragma: # -*- coding: utf-8 -*-
args: ["--remove"]
- id: mixed-line-ending # Replace or check mixed line ending
args: ["--fix=lf"]

543
gfpgan_model.py Normal file
View File

@ -0,0 +1,543 @@
import math
import os.path as osp
import torch
from collections import OrderedDict
from torch.nn import functional as F
from torchvision.ops import roi_align
from tqdm import tqdm
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.losses.losses import r1_penalty
from basicsr.metrics import calculate_metric
from basicsr.models.base_model import BaseModel
from basicsr.utils import get_root_logger, imwrite, tensor2img
class GFPGANModel(BaseModel):
"""GFPGAN model for <Towards real-world blind face restoratin with generative facial prior>"""
def __init__(self, opt):
super(GFPGANModel, self).__init__(opt)
# define network
self.net_g = build_network(opt['network_g'])
self.net_g = self.model_to_device(self.net_g)
self.print_network(self.net_g)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
param_key = self.opt['path'].get('param_key_g', 'params')
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
self.log_size = int(math.log(self.opt['network_g']['out_size'], 2))
if self.is_train:
self.init_training_settings()
def init_training_settings(self):
train_opt = self.opt['train']
# ----------- define net_d ----------- #
self.net_d = build_network(self.opt['network_d'])
self.net_d = self.model_to_device(self.net_d)
self.print_network(self.net_d)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_d', None)
if load_path is not None:
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))
# ----------- define net_g with Exponential Moving Average (EMA) ----------- #
# net_g_ema only used for testing on one GPU and saving
# There is no need to wrap with DistributedDataParallel
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
else:
self.model_ema(0) # copy net_g weight
self.net_g.train()
self.net_d.train()
self.net_g_ema.eval()
# ----------- facial components networks ----------- #
if ('network_d_left_eye' in self.opt and 'network_d_right_eye' in self.opt and 'network_d_mouth' in self.opt):
self.use_facial_disc = True
else:
self.use_facial_disc = False
if self.use_facial_disc:
# left eye
self.net_d_left_eye = build_network(self.opt['network_d_left_eye'])
self.net_d_left_eye = self.model_to_device(self.net_d_left_eye)
self.print_network(self.net_d_left_eye)
load_path = self.opt['path'].get('pretrain_network_d_left_eye')
if load_path is not None:
self.load_network(self.net_d_left_eye, load_path, True, 'params')
# right eye
self.net_d_right_eye = build_network(self.opt['network_d_right_eye'])
self.net_d_right_eye = self.model_to_device(self.net_d_right_eye)
self.print_network(self.net_d_right_eye)
load_path = self.opt['path'].get('pretrain_network_d_right_eye')
if load_path is not None:
self.load_network(self.net_d_right_eye, load_path, True, 'params')
# mouth
self.net_d_mouth = build_network(self.opt['network_d_mouth'])
self.net_d_mouth = self.model_to_device(self.net_d_mouth)
self.print_network(self.net_d_mouth)
load_path = self.opt['path'].get('pretrain_network_d_mouth')
if load_path is not None:
self.load_network(self.net_d_mouth, load_path, True, 'params')
self.net_d_left_eye.train()
self.net_d_right_eye.train()
self.net_d_mouth.train()
# ----------- define facial component gan loss ----------- #
self.cri_component = build_loss(train_opt['gan_component_opt']).to(self.device)
# ----------- define losses ----------- #
if train_opt.get('pixel_opt'):
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
else:
self.cri_pix = None
if train_opt.get('perceptual_opt'):
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
else:
self.cri_perceptual = None
# gan loss (wgan)
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)
# ----------- define identity loss ----------- #
if 'network_identity' in self.opt:
self.use_identity = True
else:
self.use_identity = False
if self.use_identity:
# define identity network
self.network_identity = build_network(self.opt['network_identity'])
self.network_identity = self.model_to_device(self.network_identity)
self.print_network(self.network_identity)
load_path = self.opt['path'].get('pretrain_network_identity')
if load_path is not None:
self.load_network(self.network_identity, load_path, True, None)
self.network_identity.eval()
for param in self.network_identity.parameters():
param.requires_grad = False
# regularization weights
self.r1_reg_weight = train_opt['r1_reg_weight'] # for discriminator
self.net_d_iters = train_opt.get('net_d_iters', 1)
self.net_d_init_iters = train_opt.get('net_d_init_iters', 0)
self.net_d_reg_every = train_opt['net_d_reg_every']
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def setup_optimizers(self):
train_opt = self.opt['train']
# ----------- optimizer g ----------- #
net_g_reg_ratio = 1
normal_params = []
for _, param in self.net_g.named_parameters():
normal_params.append(param)
optim_params_g = [{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_g']['lr']
}]
optim_type = train_opt['optim_g'].pop('type')
lr = train_opt['optim_g']['lr'] * net_g_reg_ratio
betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio)
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas)
self.optimizers.append(self.optimizer_g)
# ----------- optimizer d ----------- #
net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1)
normal_params = []
for _, param in self.net_d.named_parameters():
normal_params.append(param)
optim_params_d = [{ # add normal params first
'params': normal_params,
'lr': train_opt['optim_d']['lr']
}]
optim_type = train_opt['optim_d'].pop('type')
lr = train_opt['optim_d']['lr'] * net_d_reg_ratio
betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio)
self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas)
self.optimizers.append(self.optimizer_d)
if self.use_facial_disc:
# setup optimizers for facial component discriminators
optim_type = train_opt['optim_component'].pop('type')
lr = train_opt['optim_component']['lr']
# left eye
self.optimizer_d_left_eye = self.get_optimizer(
optim_type, self.net_d_left_eye.parameters(), lr, betas=(0.9, 0.99))
self.optimizers.append(self.optimizer_d_left_eye)
# right eye
self.optimizer_d_right_eye = self.get_optimizer(
optim_type, self.net_d_right_eye.parameters(), lr, betas=(0.9, 0.99))
self.optimizers.append(self.optimizer_d_right_eye)
# mouth
self.optimizer_d_mouth = self.get_optimizer(
optim_type, self.net_d_mouth.parameters(), lr, betas=(0.9, 0.99))
self.optimizers.append(self.optimizer_d_mouth)
def feed_data(self, data):
self.lq = data['lq'].to(self.device)
if 'gt' in data:
self.gt = data['gt'].to(self.device)
if self.use_facial_disc:
# get facial component locations, shape (batch, 4)
self.loc_left_eyes = data['loc_left_eye']
self.loc_right_eyes = data['loc_right_eye']
self.loc_mouths = data['loc_mouth']
def construct_img_pyramid(self):
pyramid_gt = [self.gt]
down_img = self.gt
for _ in range(0, self.log_size - 3):
down_img = F.interpolate(down_img, scale_factor=0.5, mode='bilinear', align_corners=False)
pyramid_gt.insert(0, down_img)
return pyramid_gt
def get_roi_regions(self, eye_out_size=80, mouth_out_size=120):
# hard code
face_ratio = int(self.opt['network_g']['out_size'] / 512)
eye_out_size *= face_ratio
mouth_out_size *= face_ratio
rois_eyes = []
rois_mouths = []
for b in range(self.loc_left_eyes.size(0)): # loop for batch size
# left eye and right eye
img_inds = self.loc_left_eyes.new_full((2, 1), b)
bbox = torch.stack([self.loc_left_eyes[b, :], self.loc_right_eyes[b, :]], dim=0) # shape: (2, 4)
rois = torch.cat([img_inds, bbox], dim=-1) # shape: (2, 5)
rois_eyes.append(rois)
# mouse
img_inds = self.loc_left_eyes.new_full((1, 1), b)
rois = torch.cat([img_inds, self.loc_mouths[b:b + 1, :]], dim=-1) # shape: (1, 5)
rois_mouths.append(rois)
rois_eyes = torch.cat(rois_eyes, 0).to(self.device)
rois_mouths = torch.cat(rois_mouths, 0).to(self.device)
# real images
all_eyes = roi_align(self.gt, boxes=rois_eyes, output_size=eye_out_size) * face_ratio
self.left_eyes_gt = all_eyes[0::2, :, :, :]
self.right_eyes_gt = all_eyes[1::2, :, :, :]
self.mouths_gt = roi_align(self.gt, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio
# output
all_eyes = roi_align(self.output, boxes=rois_eyes, output_size=eye_out_size) * face_ratio
self.left_eyes = all_eyes[0::2, :, :, :]
self.right_eyes = all_eyes[1::2, :, :, :]
self.mouths = roi_align(self.output, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio
def _gram_mat(self, x):
"""Calculate Gram matrix.
Args:
x (torch.Tensor): Tensor with shape of (n, c, h, w).
Returns:
torch.Tensor: Gram matrix.
"""
n, c, h, w = x.size()
features = x.view(n, c, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t) / (c * h * w)
return gram
def gray_resize_for_identity(self, out, size=128):
out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :])
out_gray = out_gray.unsqueeze(1)
out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False)
return out_gray
def optimize_parameters(self, current_iter):
# optimize net_g
for p in self.net_d.parameters():
p.requires_grad = False
self.optimizer_g.zero_grad()
if self.use_facial_disc:
for p in self.net_d_left_eye.parameters():
p.requires_grad = False
for p in self.net_d_right_eye.parameters():
p.requires_grad = False
for p in self.net_d_mouth.parameters():
p.requires_grad = False
# image pyramid loss weight
if current_iter < self.opt['train'].get('remove_pyramid_loss', float('inf')):
pyramid_loss_weight = self.opt['train'].get('pyramid_loss_weight', 1)
else:
pyramid_loss_weight = 1e-12 # very small loss
if pyramid_loss_weight > 0:
self.output, out_rgbs = self.net_g(self.lq, return_rgb=True)
pyramid_gt = self.construct_img_pyramid()
else:
self.output, out_rgbs = self.net_g(self.lq, return_rgb=False)
# get roi-align regions
if self.use_facial_disc:
self.get_roi_regions(eye_out_size=80, mouth_out_size=120)
l_g_total = 0
loss_dict = OrderedDict()
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
# pixel loss
if self.cri_pix:
l_g_pix = self.cri_pix(self.output, self.gt)
l_g_total += l_g_pix
loss_dict['l_g_pix'] = l_g_pix
# image pyramid loss
if pyramid_loss_weight > 0:
for i in range(0, self.log_size - 2):
l_pyramid = self.cri_l1(out_rgbs[i], pyramid_gt[i]) * pyramid_loss_weight
l_g_total += l_pyramid
loss_dict[f'l_p_{2**(i+3)}'] = l_pyramid
# perceptual loss
if self.cri_perceptual:
l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt)
if l_g_percep is not None:
l_g_total += l_g_percep
loss_dict['l_g_percep'] = l_g_percep
if l_g_style is not None:
l_g_total += l_g_style
loss_dict['l_g_style'] = l_g_style
# gan loss
fake_g_pred = self.net_d(self.output)
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan'] = l_g_gan
# facial component loss
if self.use_facial_disc:
# left eye
fake_left_eye, fake_left_eye_feats = self.net_d_left_eye(self.left_eyes, return_feats=True)
l_g_gan = self.cri_component(fake_left_eye, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan_left_eye'] = l_g_gan
# right eye
fake_right_eye, fake_right_eye_feats = self.net_d_right_eye(self.right_eyes, return_feats=True)
l_g_gan = self.cri_component(fake_right_eye, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan_right_eye'] = l_g_gan
# mouth
fake_mouth, fake_mouth_feats = self.net_d_mouth(self.mouths, return_feats=True)
l_g_gan = self.cri_component(fake_mouth, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan_mouth'] = l_g_gan
if self.opt['train'].get('comp_style_weight', 0) > 0:
# get gt feat
_, real_left_eye_feats = self.net_d_left_eye(self.left_eyes_gt, return_feats=True)
_, real_right_eye_feats = self.net_d_right_eye(self.right_eyes_gt, return_feats=True)
_, real_mouth_feats = self.net_d_mouth(self.mouths_gt, return_feats=True)
def _comp_style(feat, feat_gt, criterion):
return criterion(self._gram_mat(feat[0]), self._gram_mat(
feat_gt[0].detach())) * 0.5 + criterion(
self._gram_mat(feat[1]), self._gram_mat(feat_gt[1].detach()))
# facial component style loss
comp_style_loss = 0
comp_style_loss += _comp_style(fake_left_eye_feats, real_left_eye_feats, self.cri_l1)
comp_style_loss += _comp_style(fake_right_eye_feats, real_right_eye_feats, self.cri_l1)
comp_style_loss += _comp_style(fake_mouth_feats, real_mouth_feats, self.cri_l1)
comp_style_loss = comp_style_loss * self.opt['train']['comp_style_weight']
l_g_total += comp_style_loss
loss_dict['l_g_comp_style_loss'] = comp_style_loss
# identity loss
if self.use_identity:
identity_weight = self.opt['train']['identity_weight']
# get gray images and resize
out_gray = self.gray_resize_for_identity(self.output)
gt_gray = self.gray_resize_for_identity(self.gt)
identity_gt = self.network_identity(gt_gray).detach()
identity_out = self.network_identity(out_gray)
l_identity = self.cri_l1(identity_out, identity_gt) * identity_weight
l_g_total += l_identity
loss_dict['l_identity'] = l_identity
l_g_total.backward()
self.optimizer_g.step()
# EMA
self.model_ema(decay=0.5**(32 / (10 * 1000)))
# ----------- optimize net_d ----------- #
for p in self.net_d.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
if self.use_facial_disc:
for p in self.net_d_left_eye.parameters():
p.requires_grad = True
for p in self.net_d_right_eye.parameters():
p.requires_grad = True
for p in self.net_d_mouth.parameters():
p.requires_grad = True
self.optimizer_d_left_eye.zero_grad()
self.optimizer_d_right_eye.zero_grad()
self.optimizer_d_mouth.zero_grad()
fake_d_pred = self.net_d(self.output.detach())
real_d_pred = self.net_d(self.gt)
l_d = self.cri_gan(real_d_pred, True, is_disc=True) + self.cri_gan(fake_d_pred, False, is_disc=True)
loss_dict['l_d'] = l_d
# In wgan, real_score should be positive and fake_score should benegative
loss_dict['real_score'] = real_d_pred.detach().mean()
loss_dict['fake_score'] = fake_d_pred.detach().mean()
l_d.backward()
if current_iter % self.net_d_reg_every == 0:
self.gt.requires_grad = True
real_pred = self.net_d(self.gt)
l_d_r1 = r1_penalty(real_pred, self.gt)
l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0])
loss_dict['l_d_r1'] = l_d_r1.detach().mean()
l_d_r1.backward()
self.optimizer_d.step()
if self.use_facial_disc:
# lefe eye
fake_d_pred, _ = self.net_d_left_eye(self.left_eyes.detach())
real_d_pred, _ = self.net_d_left_eye(self.left_eyes_gt)
l_d_left_eye = self.cri_component(
real_d_pred, True, is_disc=True) + self.cri_gan(
fake_d_pred, False, is_disc=True)
loss_dict['l_d_left_eye'] = l_d_left_eye
l_d_left_eye.backward()
# right eye
fake_d_pred, _ = self.net_d_right_eye(self.right_eyes.detach())
real_d_pred, _ = self.net_d_right_eye(self.right_eyes_gt)
l_d_right_eye = self.cri_component(
real_d_pred, True, is_disc=True) + self.cri_gan(
fake_d_pred, False, is_disc=True)
loss_dict['l_d_right_eye'] = l_d_right_eye
l_d_right_eye.backward()
# mouth
fake_d_pred, _ = self.net_d_mouth(self.mouths.detach())
real_d_pred, _ = self.net_d_mouth(self.mouths_gt)
l_d_mouth = self.cri_component(
real_d_pred, True, is_disc=True) + self.cri_gan(
fake_d_pred, False, is_disc=True)
loss_dict['l_d_mouth'] = l_d_mouth
l_d_mouth.backward()
self.optimizer_d_left_eye.step()
self.optimizer_d_right_eye.step()
self.optimizer_d_mouth.step()
self.log_dict = self.reduce_loss_dict(loss_dict)
def test(self):
with torch.no_grad():
if hasattr(self, 'net_g_ema'):
self.net_g_ema.eval()
self.output, _ = self.net_g_ema(self.lq)
else:
logger = get_root_logger()
logger.warning('Do not have self.net_g_ema, use self.net_g.')
self.net_g.eval()
self.output, _ = self.net_g(self.lq)
self.net_g.train()
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
if self.opt['rank'] == 0:
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
dataset_name = dataloader.dataset.opt['name']
with_metrics = self.opt['val'].get('metrics') is not None
if with_metrics:
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
pbar = tqdm(total=len(dataloader), unit='image')
for idx, val_data in enumerate(dataloader):
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
self.feed_data(val_data)
self.test()
visuals = self.get_current_visuals()
sr_img = tensor2img([visuals['sr']], min_max=(-1, 1))
gt_img = tensor2img([visuals['gt']], min_max=(-1, 1))
if 'gt' in visuals:
gt_img = tensor2img([visuals['gt']], min_max=(-1, 1))
del self.gt
# tentative for out of GPU memory
del self.lq
del self.output
torch.cuda.empty_cache()
if save_img:
if self.opt['is_train']:
save_img_path = osp.join(self.opt['path']['visualization'], img_name,
f'{img_name}_{current_iter}.png')
else:
if self.opt['val']['suffix']:
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
f'{img_name}_{self.opt["val"]["suffix"]}.png')
else:
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
f'{img_name}_{self.opt["name"]}.png')
imwrite(sr_img, save_img_path)
if with_metrics:
# calculate metrics
for name, opt_ in self.opt['val']['metrics'].items():
metric_data = dict(img1=sr_img, img2=gt_img)
self.metric_results[name] += calculate_metric(metric_data, opt_)
pbar.update(1)
pbar.set_description(f'Test {img_name}')
pbar.close()
if with_metrics:
for metric in self.metric_results.keys():
self.metric_results[metric] /= (idx + 1)
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
log_str = f'Validation {dataset_name}\n'
for metric, value in self.metric_results.items():
log_str += f'\t # {metric}: {value:.4f}\n'
logger = get_root_logger()
logger.info(log_str)
if tb_logger:
for metric, value in self.metric_results.items():
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
def get_current_visuals(self):
out_dict = OrderedDict()
out_dict['gt'] = self.gt.detach().cpu()
out_dict['sr'] = self.output.detach().cpu()
return out_dict
def save(self, epoch, current_iter):
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
self.save_network(self.net_d, 'net_d', current_iter)
# save component discriminators
if self.use_facial_disc:
self.save_network(self.net_d_left_eye, 'net_d_left_eye', current_iter)
self.save_network(self.net_d_right_eye, 'net_d_right_eye', current_iter)
self.save_network(self.net_d_mouth, 'net_d_mouth', current_iter)
self.save_training_state(epoch, current_iter)

386
gfpganv1_arch.py Normal file
View File

@ -0,0 +1,386 @@
import math
import random
import torch
from torch import nn
from torch.nn import functional as F
from basicsr.archs.stylegan2_arch import (ConvLayer, EqualConv2d, EqualLinear, ResBlock, ScaledLeakyReLU,
StyleGAN2Generator)
from basicsr.ops.fused_act import FusedLeakyReLU
class StyleGAN2GeneratorSFTV1(StyleGAN2Generator):
"""StyleGAN2 Generator.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
num_mlp (int): Layer number of MLP style layers. Default: 8.
channel_multiplier (int): Channel multiplier for large networks of
StyleGAN2. Default: 2.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. A cross production will be applied to extent 1D resample
kenrel to 2D resample kernel. Default: [1, 3, 3, 1].
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
"""
def __init__(self,
out_size,
num_style_feat=512,
num_mlp=8,
channel_multiplier=2,
resample_kernel=[1, 3, 3, 1],
lr_mlp=0.01,
narrow=1,
sft_half=False):
super(StyleGAN2GeneratorSFTV1, self).__init__(
out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
resample_kernel=resample_kernel,
lr_mlp=lr_mlp,
narrow=narrow)
self.sft_half = sft_half
def forward(self,
styles,
conditions,
input_is_latent=False,
noise=None,
randomize_noise=True,
truncation=1,
truncation_latent=None,
inject_index=None,
return_latents=False):
"""Forward function for StyleGAN2Generator.
Args:
styles (list[Tensor]): Sample codes of styles.
input_is_latent (bool): Whether input is latent style.
Default: False.
noise (Tensor | None): Input noise or None. Default: None.
randomize_noise (bool): Randomize noise, used when 'noise' is
False. Default: True.
truncation (float): TODO. Default: 1.
truncation_latent (Tensor | None): TODO. Default: None.
inject_index (int | None): The injection index for mixing noise.
Default: None.
return_latents (bool): Whether to return style latents.
Default: False.
"""
# style codes -> latents with Style MLP layer
if not input_is_latent:
styles = [self.style_mlp(s) for s in styles]
# noises
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers # for each style conv layer
else: # use the stored noise
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
# style truncation
if truncation < 1:
style_truncation = []
for style in styles:
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
styles = style_truncation
# get style latent with injection
if len(styles) == 1:
inject_index = self.num_latent
if styles[0].ndim < 3:
# repeat latent code for all the layers
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: # used for encoder with different latent code for each layer
latent = styles[0]
elif len(styles) == 2: # mixing noises
if inject_index is None:
inject_index = random.randint(1, self.num_latent - 1)
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
latent = torch.cat([latent1, latent2], 1)
# main generation
out = self.constant_input(latent.shape[0])
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
noise[2::2], self.to_rgbs):
out = conv1(out, latent[:, i], noise=noise1)
# the conditions may have fewer levels
if i < len(conditions):
# SFT part to combine the conditions
if self.sft_half:
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
out_sft = out_sft * conditions[i - 1] + conditions[i]
out = torch.cat([out_same, out_sft], dim=1)
else:
out = out * conditions[i - 1] + conditions[i]
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip)
i += 2
image = skip
if return_latents:
return image, latent
else:
return image, None
class ConvUpLayer(nn.Module):
"""Conv Up Layer. Bilinear upsample + Conv.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
stride (int): Stride of the convolution. Default: 1
padding (int): Zero-padding added to both sides of the input.
Default: 0.
bias (bool): If ``True``, adds a learnable bias to the output.
Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
activate (bool): Whether use activateion. Default: True.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
bias=True,
bias_init_val=0,
activate=True):
super(ConvUpLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
if bias and not activate:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
else:
self.register_parameter('bias', None)
# activation
if activate:
if bias:
self.activation = FusedLeakyReLU(out_channels)
else:
self.activation = ScaledLeakyReLU(0.2)
else:
self.activation = None
def forward(self, x):
# bilinear upsample
out = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
# conv
out = F.conv2d(
out,
self.weight * self.scale,
bias=self.bias,
stride=self.stride,
padding=self.padding,
)
# activation
if self.activation is not None:
out = self.activation(out)
return out
class ResUpBlock(nn.Module):
"""Residual block with upsampling.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
"""
def __init__(self, in_channels, out_channels):
super(ResUpBlock, self).__init__()
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
self.conv2 = ConvUpLayer(in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True)
self.skip = ConvUpLayer(in_channels, out_channels, 1, bias=False, activate=False)
def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
skip = self.skip(x)
out = (out + skip) / math.sqrt(2)
return out
class GFPGANv1(nn.Module):
"""Unet + StyleGAN2 decoder with SFT."""
def __init__(
self,
out_size,
num_style_feat=512,
channel_multiplier=1,
resample_kernel=[1, 3, 3, 1],
decoder_load_path=None,
fix_decoder=True,
# for stylegan decoder
num_mlp=8,
lr_mlp=0.01,
input_is_latent=False,
different_w=False,
narrow=1,
sft_half=False):
super(GFPGANv1, self).__init__()
self.input_is_latent = input_is_latent
self.different_w = different_w
self.num_style_feat = num_style_feat
unet_narrow = narrow * 0.5
channels = {
'4': int(512 * unet_narrow),
'8': int(512 * unet_narrow),
'16': int(512 * unet_narrow),
'32': int(512 * unet_narrow),
'64': int(256 * channel_multiplier * unet_narrow),
'128': int(128 * channel_multiplier * unet_narrow),
'256': int(64 * channel_multiplier * unet_narrow),
'512': int(32 * channel_multiplier * unet_narrow),
'1024': int(16 * channel_multiplier * unet_narrow)
}
self.log_size = int(math.log(out_size, 2))
first_out_size = 2**(int(math.log(out_size, 2)))
self.conv_body_first = ConvLayer(3, channels[f'{first_out_size}'], 1, bias=True, activate=True)
# downsample
in_channels = channels[f'{first_out_size}']
self.conv_body_down = nn.ModuleList()
for i in range(self.log_size, 2, -1):
out_channels = channels[f'{2**(i - 1)}']
self.conv_body_down.append(ResBlock(in_channels, out_channels, resample_kernel))
in_channels = out_channels
self.final_conv = ConvLayer(in_channels, channels['4'], 3, bias=True, activate=True)
# upsample
in_channels = channels['4']
self.conv_body_up = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f'{2**i}']
self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
in_channels = out_channels
# to RGB
self.toRGB = nn.ModuleList()
for i in range(3, self.log_size + 1):
self.toRGB.append(EqualConv2d(channels[f'{2**i}'], 3, 1, stride=1, padding=0, bias=True, bias_init_val=0))
if different_w:
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
else:
linear_out_channel = num_style_feat
self.final_linear = EqualLinear(
channels['4'] * 4 * 4, linear_out_channel, bias=True, bias_init_val=0, lr_mul=1, activation=None)
self.stylegan_decoder = StyleGAN2GeneratorSFTV1(
out_size=out_size,
num_style_feat=num_style_feat,
num_mlp=num_mlp,
channel_multiplier=channel_multiplier,
resample_kernel=resample_kernel,
lr_mlp=lr_mlp,
narrow=narrow,
sft_half=sft_half)
if decoder_load_path:
self.stylegan_decoder.load_state_dict(
torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
if fix_decoder:
for name, param in self.stylegan_decoder.named_parameters():
param.requires_grad = False
# for SFT
self.condition_scale = nn.ModuleList()
self.condition_shift = nn.ModuleList()
for i in range(3, self.log_size + 1):
out_channels = channels[f'{2**i}']
if sft_half:
sft_out_channels = out_channels
else:
sft_out_channels = out_channels * 2
self.condition_scale.append(
nn.Sequential(
EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
ScaledLeakyReLU(0.2),
EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=1)))
self.condition_shift.append(
nn.Sequential(
EqualConv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0),
ScaledLeakyReLU(0.2),
EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0)))
def forward(self,
x,
return_latents=False,
save_feat_path=None,
load_feat_path=None,
return_rgb=True,
randomize_noise=True):
conditions = []
unet_skips = []
out_rgbs = []
# encoder
feat = self.conv_body_first(x)
for i in range(self.log_size - 2):
feat = self.conv_body_down[i](feat)
unet_skips.insert(0, feat)
feat = self.final_conv(feat)
# style code
style_code = self.final_linear(feat.view(feat.size(0), -1))
if self.different_w:
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
# decode
for i in range(self.log_size - 2):
# add unet skip
feat = feat + unet_skips[i]
# ResUpLayer
feat = self.conv_body_up[i](feat)
# generate scale and shift for SFT layer
scale = self.condition_scale[i](feat)
conditions.append(scale.clone())
shift = self.condition_shift[i](feat)
conditions.append(shift.clone())
# generate rgb images
if return_rgb:
out_rgbs.append(self.toRGB[i](feat))
if save_feat_path is not None:
torch.save(conditions, save_feat_path)
if load_feat_path is not None:
conditions = torch.load(load_feat_path)
conditions = [v.cuda() for v in conditions]
# decoder
image, _ = self.stylegan_decoder([style_code],
conditions,
return_latents=return_latents,
input_is_latent=self.input_is_latent,
randomize_noise=randomize_noise)
return image, out_rgbs

102
inference_gfpgan_full.py Normal file
View File

@ -0,0 +1,102 @@
import argparse
import cv2
import glob
import os
import torch
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from torchvision.transforms.functional import normalize
from basicsr.utils import img2tensor, imwrite, tensor2img
from gfpganv1_arch import GFPGANv1
def restoration(gfpgan, face_helper, img_path, save_root, has_aligned=False, only_center_face=True, suffix=None):
# read image
img_name = os.path.basename(img_path)
print(f'Processing {img_name} ...')
basename, _ = os.path.splitext(img_name)
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
face_helper.clean_all()
if has_aligned:
input_img = cv2.resize(input_img, (512, 512))
face_helper.cropped_faces = [input_img]
else:
face_helper.read_image(input_img)
# get face landmarks for each face
face_helper.get_face_landmarks_5(only_center_face=only_center_face, pad_blur=False)
# align and warp each face
save_crop_path = os.path.join(save_root, 'cropped_faces', img_name)
face_helper.align_warp_face(save_crop_path)
# face restoration
for idx, cropped_face in enumerate(face_helper.cropped_faces):
# prepare data
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to('cuda')
try:
with torch.no_grad():
output = gfpgan(cropped_face_t, return_rgb=False)[0]
# convert to image
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
except RuntimeError as error:
print(f'\tFailed inference for GFPGAN: {error}.')
restored_face = cropped_face
restored_face = restored_face.astype('uint8')
face_helper.add_restored_face(restored_face)
if suffix is not None:
save_face_name = f'{basename}_{idx:02d}_{suffix}.png'
else:
save_face_name = f'{basename}_{idx:02d}.png'
save_restore_path = os.path.join(save_root, 'restored_faces', save_face_name)
imwrite(restored_face, save_restore_path)
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
parser.add_argument('--upscale_factor', type=int, default=1)
parser.add_argument('--model_path', type=str, default='models/GFPGANv1.pth')
parser.add_argument('--test_path', type=str, default='inputs')
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces')
parser.add_argument('--only_center_face', action='store_true')
args = parser.parse_args()
if args.test_path.endswith('/'):
args.test_path = args.test_path[:-1]
save_root = 'results/'
os.makedirs(save_root, exist_ok=True)
# initialize the GFP-GAN
gfpgan = GFPGANv1(
out_size=512,
num_style_feat=512,
channel_multiplier=1,
decoder_load_path=None,
fix_decoder=True,
# for stylegan decoder
num_mlp=8,
input_is_latent=True,
different_w=True,
narrow=1,
sft_half=True)
gfpgan.to(device)
checkpoint = torch.load(args.model_path, map_location=lambda storage, loc: storage)
gfpgan.load_state_dict(checkpoint['params_ema'])
gfpgan.eval()
# initialize face helper
face_helper = FaceRestoreHelper(
upscale_factor=1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png')
# scan all the jpg and png images
img_list = sorted(glob.glob(os.path.join(args.test_path, '*.[jp][pn]g')))
for img_path in img_list:
restoration(
gfpgan, face_helper, img_path, save_root, has_aligned=False, only_center_face=True, suffix=args.suffix)

22
setup.cfg Normal file
View File

@ -0,0 +1,22 @@
[flake8]
ignore =
# line break before binary operator (W503)
W503,
# line break after binary operator (W504)
W504,
max-line-length=120
[yapf]
based_on_style = pep8
column_limit = 120
blank_line_before_nested_class_or_def = true
split_before_expression_after_opening_paren = true
[isort]
line_length = 120
multi_line_output = 0
known_standard_library = pkg_resources,setuptools
known_first_party = basicsr
known_third_party = cv2,facexlib,torch,torchvision,tqdm
no_lines_before = STDLIB,LOCALFOLDER
default_section = THIRDPARTY